ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

算術の基本定理

索引 算術の基本定理

pp.

47 関係: 単元単項イデアル整域単数合成数寺阪英孝中村幸四郎一意分解環平方剰余の相互法則交換法則互いに素代数学の基本定理代数体伊東俊太郎微分積分学の基本定理ネーター環モノイドユークリッド原論ユークリッドの互除法ユークリッドの補題ユークリッド環ベズーの等式初等整数論アラン・ベイカーエウクレイデスカール・フリードリヒ・ガウスゴッドフレイ・ハロルド・ハーディサイエンス社共立出版空積素元素因数分解素数結合法則環 (数学)Disquisitiones Arithmeticae違いを除いて高瀬正仁高木貞治自然数Wolframデモンストレーションプロジェクト抽象代数学池田美恵朝倉書店最大公約数整礎関係整数

単元

単元(たんげん).

新しい!!: 算術の基本定理と単元 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: 算術の基本定理と単項イデアル整域 · 続きを見る »

単数

* 数学における環の乗法的可逆元.

新しい!!: 算術の基本定理と単数 · 続きを見る »

合成数

合成数(ごうせいすう、Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数の積で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9.

新しい!!: 算術の基本定理と合成数 · 続きを見る »

寺阪英孝

寺阪 英孝(てらさか ひでたか、1904年1月27日 - 1996年4月3日)は日本の数学者。専攻は幾何学。大阪大学名誉教授、理学博士(1938年)。正四位勲二等瑞宝章。 幾何学基礎論の研究者。また、1957年以来、結び目理論の研究をおこなっている。趣味は、絵画鑑賞と植物を育て賞でること。.

新しい!!: 算術の基本定理と寺阪英孝 · 続きを見る »

中村幸四郎

中村 幸四郎(なかむら こうしろう、1901年6月6日 - 1986年9月28日)は日本の数学者。専攻は数学基礎論、数学史。大阪大学名誉教授、関西学院大学名誉教授、兵庫医科大学名誉教授、文学博士。従四位勲三等旭日中綬章。 トポロジーを日本に最初に導入し、「位相幾何学」と翻訳した。また、エウクレイデスの『幾何原本』を「原論」と訳した。東京文理科大学で下村寅太郎と数学史の研究を始め、大阪大学で原亭吉と研究を進めた。 数学の参考書では、数研出版から『チャート式 基礎からの基礎解析』、『チャート式 基礎からの代数・幾何』、『チャート式 基礎からの微分・積分』などを著している。.

新しい!!: 算術の基本定理と中村幸四郎 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 算術の基本定理と一意分解環 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 算術の基本定理と平方剰余の相互法則 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 算術の基本定理と交換法則 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 算術の基本定理と互いに素 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 算術の基本定理と代数学の基本定理 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 算術の基本定理と代数体 · 続きを見る »

伊東俊太郎

伊東 俊太郎(いとう しゅんたろう、1930年4月25日 - )は、日本の科学史家・文明史家。東京大学名誉教授、国際日本文化研究センター名誉教授、麗澤大学名誉教授。.

新しい!!: 算術の基本定理と伊東俊太郎 · 続きを見る »

微分積分学の基本定理

微分積分学の基本定理(びぶんせきぶんがくのきほんていり、fundamental theorem of calculus)とは、「微分と積分が互いに逆の操作・演算である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。ここで「積分」は、リーマン積分のことを指す。 この事実こそ、発見者のニュートンやライプニッツらを微分積分学の創始者たらしめている重要な定理である。 この定理は主に一変数の連続関数など素性の良い関数に対するものである。これを多変数(高次元)の場合に拡張する方法は一つではないが、ベクトル解析におけるストークスの定理はその一例として挙げられるだろう。また、どの程度病的な関数について定理が成り立つのかというのも意味のある疑問であるといえる。 現在では微分積分学の初期に学ぶ基本的な定理であるが、この定理が実際に発見されたのは比較的最近(17世紀)である。この定理が発見されるまでは、微分法(曲線の接線の概念)と積分法(面積・体積などの求積)はなんの関連性も無い全く別の計算だと考えられていた。.

新しい!!: 算術の基本定理と微分積分学の基本定理 · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: 算術の基本定理とネーター環 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 算術の基本定理とモノイド · 続きを見る »

ユークリッド原論

ュリュンコスで発見された『ユークリッド原論』のパピルスの写本断片。紀元100年ごろの作。図は『原論』第2巻の命題5に添えられたもの。 ユークリッド原論(ユークリッドげんろん)は、紀元前3世紀ごろにエジプトのアレクサンドリアの数学者ユークリッドによって編纂されたと言われる数学書『原論』(げんろん、Στοιχεία, ストイケイア、Elements)のことである。著者のユークリッドに関する資料は乏しく実在性を疑う説もあり、原論執筆の地がアレクサンドリアであることに対する明確な根拠も無い。プラトンの学園アカデメイアで知られていた数学の成果を集めて体系化した本と考えられており、論証的学問としての数学の地位を確立した古代ギリシア数学を代表する名著である。古代の書物でありながらその影響は古代に留まらず、後世の人々によって図や注釈が加えられたり翻訳された多種多様な版が作られ続け、20世紀初頭に至るまで標準的な数学の教科書の一つとして使われていたため、西洋の書物では聖書に次いで世界中で読まれてきた本とも評される。英語の数学「Mathematics」の語源といわれているラテン語またはギリシア語の「マテーマタ」(Μαθήματα)は「レッスン(学ばれるべきことども)」という意味であり、このマテーマタを集大成したものが『原論』である。.

新しい!!: 算術の基本定理とユークリッド原論 · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: 算術の基本定理とユークリッドの互除法 · 続きを見る »

ユークリッドの補題

ユークリッドの補題(ユークリッドのほだい、Euclid's lemma)またはユークリッドの第一定理(ユークリッドのだいいちていり、Euclid's first theorem)とは素数に関する次の基本的な性質について述べた補題である: たとえば、、、 の場合、 について、 は で割り切れるので、ユークリッドの補題から, の少なくとも一方は で割り切ることができる。実際、 であり は で割り切れる。 この性質は整数論の基本定理を証明する鍵となる一般に、域が一意分解整域であることを示すことは、ユークリッドの補題と (ACCP) を導くには充分である。。これは素元、すなわち任意の可換環における一般化された素数の定義に用いられる。 ユークリッドの補題は合成数に対しては成り立たない。 たとえば、、、 の場合、合成数 は積 を割り切るにもかかわらず、 は を割り切れないし も割り切ることができない。 ユークリッドの補題の名は、古代ギリシアの数学者アレクサンドリアのエウクレイデスの著作『原論』第7巻の命題30で示されたことによる。.

新しい!!: 算術の基本定理とユークリッドの補題 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: 算術の基本定理とユークリッド環 · 続きを見る »

ベズーの等式

ベズーの等式 (Bézout's identity) (ベズーの補題 (Bézout's lemma) とも呼ばれる)は初等整数論における定理である。a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して となる。さらに、i) d は と書ける最小の正の整数であり、ii) の形のすべての整数は d の倍数である。x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から |x| かつ |y| であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。.

新しい!!: 算術の基本定理とベズーの等式 · 続きを見る »

初等整数論

初等整数論(しょとうせいすうろん、Elementary number theory)とは、代数的な道具・手法(群、イデアルなど)や解析的な道具・手法(関数、極限など)を用いない初等的な整数論(数論)のことである。対象が、「整数」に限られることが多いためか、「初等数論」と呼ばれることは稀である。また、「初等的整数論」と呼ばれることも稀である。 内容については、中学程度の数学の知識があれば理解できる部分から始まること、パズル的な要素をもつ部分が多いことなどから、初心者にもある程度の人気がある。しかし、「初等」(的)とは、必ずしも常に「簡単である」ということを意味するわけではない。例えば、素数定理の「初等」的な(解析的な手法を用いない)証明は、決して簡単ではない。.

新しい!!: 算術の基本定理と初等整数論 · 続きを見る »

アラン・ベイカー

アラン・ベイカー(Alan Baker、1939年8月19日 – 2018年2月4日)はロンドン出身のイギリスの数学者。王立協会フェロー。数論、特に超越数の理論の研究で知られる。1970年、31歳の時に、ディオファントス方程式に関する功績により、フィールズ賞を受賞した。彼はユニヴァーシティ・カレッジ・ロンドンのの下で数学の研究を始め、後にケンブリッジ大学に移った。専門は他になどである。教え子にジョン・コーツらがいる。 1966年-1968年にかけて、アラン・ベイカーによって発表された『ベイカーの定理』とは、「対数関数の一次形式に対する線形独立性、および下界の評価に関する定理」で、多くの不定方程式について、整数解が有限個しか存在せず、しかもそれらは有効的に計算可能であることを示した。また、類数が 1, 2 である虚二次体の決定の際にも使用される等、数論の様々なところで応用されている。.

新しい!!: 算術の基本定理とアラン・ベイカー · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 算術の基本定理とエウクレイデス · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 算術の基本定理とカール・フリードリヒ・ガウス · 続きを見る »

ゴッドフレイ・ハロルド・ハーディ

ッドフレイ・ハロルド・ハーディ(Godfrey Harold Hardy, 1877年2月7日 - 1947年12月1日)は、イギリスの数学者。.

新しい!!: 算術の基本定理とゴッドフレイ・ハロルド・ハーディ · 続きを見る »

サイエンス社

株式会社サイエンス社(サイエンスしゃ、英称:SAIENSU-SHA Co.,Ltd.)は、東京都渋谷区千駄ヶ谷にある日本の出版社である。.

新しい!!: 算術の基本定理とサイエンス社 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: 算術の基本定理と共立出版 · 続きを見る »

積(せき)とは数学の乗法の結果を指す。平面や物体の広さや大きさは乗法によって得られるため、転じて広さや大きさという意味も持つ。 同列の言葉として加法の結果を示す和、減法の結果を示す差、除法の結果を示す商があり、まとめて和差積商と呼ぶ。 数学において 1 との乗算は演算前と演算後で値に変化が見られないことから省略される。そのため全ての実数が積であるともいうことが可能である。.

新しい!!: 算術の基本定理と積 · 続きを見る »

空積

数学における空積(くうせき、empty product)あるいは零項積 (nullary product) は、 個の因子を掛けた結果である。(考えている乗法演算に単位元が存在する場合に限り)「空積の値は単位元 1 に等しい」という規約を設ける。このことは、空和(すなわち0個の数を足した結果)が零元 0 に等しいと約束することと同様である。 用語 "空積" は算術的演算を議論するときに上の意味で使われることが多い。しかしながら、この用語は集合論の共通部分、圏論の積、コンピュータプログラミングにおける積に対しても使われる。これらは以下で議論される。.

新しい!!: 算術の基本定理と空積 · 続きを見る »

素元

数学、特に抽象代数学において、可換環の素元(prime element)は整数における素数や既約多項式と似たある性質を満たす対象である。素元と既約元を区別するよう注意しなければならない。既約元はUFDにおいては素元と同じ概念であるが、一般には異なる。.

新しい!!: 算術の基本定理と素元 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: 算術の基本定理と素因数分解 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 算術の基本定理と素数 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 算術の基本定理と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 算術の基本定理と環 (数学) · 続きを見る »

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae(ディスクィジティオネス・アリトメティカエ、ラテン語で算術研究の意、以下 D. A. と略す)は、カール・フリードリヒ・ガウス唯一の著書にして、後年の数論の研究に多大な影響を与えた書物である。1801年、ガウス24歳のときに公刊された。その研究の端緒はガウス17歳の1795年にまでさかのぼり、1797年にはほぼ原稿は完成していた。 ラテン語の arithmetica(アリトメティカ)は通常「算術」と訳されるが、ガウスの意図したものは、今日「数論」もしくは「整数論」と呼ばれる学術的領域である高瀬 1995、pp.

新しい!!: 算術の基本定理とDisquisitiones Arithmeticae · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 算術の基本定理と違いを除いて · 続きを見る »

高瀬正仁

正仁(たかせ まさひと、1951年1月23日- )は日本の数学者、数学史家。理学博士(九州大学)。九州大学基幹教育研究院教授、大正大学非常勤講師。専門は多変数関数論、数学史。.

新しい!!: 算術の基本定理と高瀬正仁 · 続きを見る »

高木貞治

木 貞治(たかぎ ていじ、1875年(明治8年)4月21日 - 1960年(昭和35年)2月28日)は、日本の数学者。東京帝国大学教授。第1回フィールズ賞選考委員。文化勲章受章。.

新しい!!: 算術の基本定理と高木貞治 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 算術の基本定理と自然数 · 続きを見る »

Wolframデモンストレーションプロジェクト

Wolframデモンストレーションプロジェクト(Wolfram Demonstrations Project)は、計算を使った探求をできるだけ多くの人々に体験してもえるようにすることを目標とした、ウルフラム・リサーチが主催するプロジェクトのウェブサイトである。このサイトでは、デモンストレーションと呼ばれるオープンソースの小さなインタラクティブプログラムが集められ、系統的に掲載されている。このデモンストレーションは、さまざまな分野のアイディアを視覚的かつインタラクティブに表現することを意図して作られている。このサイトの公開当初、デモンストレーションの数は1300件であったが、その後1万件以上にまで増加した。このサイトは2008年にParents' Choice Awardを受賞している。.

新しい!!: 算術の基本定理とWolframデモンストレーションプロジェクト · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 算術の基本定理と抽象代数学 · 続きを見る »

池田美恵

池田 美恵(いけだ みえ、1919年 - 1997年)は、日本のギリシア哲学研究者。.

新しい!!: 算術の基本定理と池田美恵 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 算術の基本定理と朝倉書店 · 続きを見る »

最大公約数

40と15に関する次の要素が埋め込まれた図: 積(600)、 商と剰余(40÷15.

新しい!!: 算術の基本定理と最大公約数 · 続きを見る »

整礎関係

数学において、二項関係が整礎(せいそ、well-founded)であるとは、真の無限降下列をもたないことである。.

新しい!!: 算術の基本定理と整礎関係 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 算術の基本定理と整数 · 続きを見る »

ここにリダイレクトされます:

一意分解定理整数論のの基本定理整数論の基本定理素因数分解の一意性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »