ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

結び目理論

索引 結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

78 関係: 培風館基本群あやとり単射単位円合成数場の量子論多項式大槻知忠対偶 (論理学)岩波書店不変量丸善雄松堂三葉結び目交代結び目交点数 (結び目理論)二項演算代数的位相幾何学弦理論低次元トポロジー位相同型位相幾何学微分可能モノイドユークリッド空間ライデマイスター移動ローラン級数トーラス結び目デーン手術デオキシリボ核酸ドウカーの表示法ホモトピーホンフリー多項式和達三樹アレクサンダー多項式コンウェイ多項式シュプリンガー・ジャパンジョーンズ多項式スケイン関係式タンパク質タングルサイエンス社円周共立出版球面素数群論結び目結び目 (数学)絡み数...統計力学組み紐 (数学)異性体鏡像蝶結び距離空間量子不変量自明な結び目連続写像連結和河内明夫朝倉書店日本評論社1923年1990年1991年1992年1993年1995年1996年1998年1999年2000年2002年2003年2007年2012年8の字結び目 インデックスを展開 (28 もっと) »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 結び目理論と培風館 · 続きを見る »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: 結び目理論と基本群 · 続きを見る »

あやとり

あやとり あやとりは、1本の紐の両端を結んで輪にし、主に両手の指に紐を引っ掛けたり外したりしながら、特定の物の形に見えるようにする伝統的な遊び。地域によっていととり、ちどりなど多くの異称がある。.

新しい!!: 結び目理論とあやとり · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 結び目理論と単射 · 続きを見る »

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 結び目理論と単位円 · 続きを見る »

合成数

合成数(ごうせいすう、Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数の積で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9.

新しい!!: 結び目理論と合成数 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: 結び目理論と場の量子論 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 結び目理論と多項式 · 続きを見る »

大槻知忠

大槻 知忠 (おおつき ともただ、1965年 - )は日本の数学者。京都大学数理解析研究所教授。専門はトポロジー。 世界ではじめてヴァシリエフ不変量 (有限型不変量) を一般の3次元多様体に拡張した。非常に強力な量子不変量であるコンツェビッチ不変量 (普遍不変量) から3次元多様体の普遍摂動不変量 (LMO不変量) を構成した。さらにこれらの結果をもとに3次元多様体の普遍有限型不変量を構成した。これらの業績によって世界的に知られるトポロジスト。 3次元における不変量の未解決問題集 "Problems on invariants of knots and 3-manifolds" を編纂した。.

新しい!!: 結び目理論と大槻知忠 · 続きを見る »

対偶 (論理学)

対偶(たいぐう、Contraposition)とは、ある命題が成立する場合に、その命題の仮定と結論の両方を否定した命題も成立するという命題同士の関係性の事を言う。 命題「AならばB」の対偶は「BでないならAでない」である。 論理記号を用いて説明すると、命題「A ⇒ B」の対偶は「¬B⇒ ¬A」(¬A は命題 A の否定)である。 通常の数学では、命題「AならばB」の真偽とその対偶「BでないならAでない」の真偽とは必ず一致する(すなわち真理値が等しい)。 数学では、元の命題「AならばB」の証明が難しくても、その対偶「BでないならAでない」の証明は比較的易しい場合がある。「AならばB」と「BでないならAでない」との真偽は一致するので、このようなときには対偶「BでないならAでない」のほうを証明すれば「AならばB」を証明できる(対偶論法)。.

新しい!!: 結び目理論と対偶 (論理学) · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: 結び目理論と岩波書店 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 結び目理論と不変量 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: 結び目理論と丸善雄松堂 · 続きを見る »

三葉結び目

三葉結び目(さんようむすびめ/みつばむすびめ、Trefoil knot)またはクローバー結び目とは、位相幾何学の一分野である結び目理論において、自明でない最も単純な結び目である。ロープワークでいうところの止め結びに相当する。 名前の由来は植物のクローバー。三葉結び目をあしらったデザインの彫刻やロゴなどは多く、例えばウェールズ大学の数学科は彫刻家のジョン・ロビンソンが作成した三葉結び目状の彫刻を学科のシンボルとしている。.

新しい!!: 結び目理論と三葉結び目 · 続きを見る »

交代結び目

交代結び目(こうたいむすびめ、Alternating knot)とは、位相幾何学の一分野である結び目理論において、成分が交点の上下を交互に通るような射影図を持つ結び目のこと。絡み目の場合は交代絡み目(Alternating link)という。交代結び目を含んだより広い概念である交互結び目(Alternative knot)とは異なるが、Alternating knotに対して交互結び目という訳語がふられることもある。.

新しい!!: 結び目理論と交代結び目 · 続きを見る »

交点数 (結び目理論)

交点数(こうてんすう、Crossing number)とは、位相幾何学の一分野である結び目理論において、結び目(絡み目)またはその射影図に対して定義される量。結び目(絡み目)の交点数は結び目(絡み目)の不変量である。.

新しい!!: 結び目理論と交点数 (結び目理論) · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 結び目理論と二項演算 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 結び目理論と代数的位相幾何学 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: 結び目理論と弦理論 · 続きを見る »

低次元トポロジー

数学における低次元位相幾何学(ていじげんいそうきかがく、low-dimensional topologyは、4次元、あるいはそれ以下の次元の多様体の研究をする位相幾何学の一分野である。扱われる主題は、および4次元多様体の構造論、結び目理論および組み紐群などがある。低次元トポロジーは幾何学的位相幾何学の一部と見なすことができる。.

新しい!!: 結び目理論と低次元トポロジー · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 結び目理論と位相同型 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 結び目理論と位相幾何学 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: 結び目理論と微分可能 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 結び目理論とモノイド · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 結び目理論とユークリッド空間 · 続きを見る »

ライデマイスター移動

ライデマイスター移動(-いどう、Reidemeister move)とは、位相幾何学の一分野である結び目理論において、結び目や絡み目の射影図に対して施す基本的な変形。ライデマイスター変形とも。名前の由来は数学者のクルト・ライデマイスター。.

新しい!!: 結び目理論とライデマイスター移動 · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 結び目理論とローラン級数 · 続きを見る »

トーラス結び目

(3,7)型トーラス結び目の立体的な図。 トーラス結び目(トーラスむすびめ、Torus knot)または輪環結び目(りんかんむすびめ)とは、位相幾何学の一分野である結び目理論において、トーラス面上にぴったりと貼り付けられるような結び目のこと。絡み目の場合はトーラス絡み目(トーラスからみめ、Torus link)という。.

新しい!!: 結び目理論とトーラス結び目 · 続きを見る »

デーン手術

デーン手術(デーンしゅじゅつ、Dehn surgery)とは、位相幾何学において、3次元多様体をその中にある結び目や絡み目の近傍の境界に沿って切り貼りして新たに3次元多様体を得るような手術のこと。名前は数学者のマックス・デーンに由来する。結び目・絡み目を利用して多様体を得る方法としてはほかに被覆空間によるものがある。 以下では3次元球面を手術するとして解説している。.

新しい!!: 結び目理論とデーン手術 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 結び目理論とデオキシリボ核酸 · 続きを見る »

ドウカーの表示法

ドウカーの表示法(ドウカーのひょうじほう、Dowker notation)とは、位相幾何学の一分野である結び目理論において、結び目を表示する方法のひとつ。名前は数学者のに由来する。元となる、結び目の射影図を偶数の数列で表すアイデアはカール・フリードリヒ・ガウスが考案したもので、その後改良が加えられた。 結び目の表示法には、ほかにや組み紐の群による表示法などがある。.

新しい!!: 結び目理論とドウカーの表示法 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 結び目理論とホモトピー · 続きを見る »

ホンフリー多項式

ホンフリー多項式(ホンフリーたこうしき、HOMFLY polynomial)またはホムフリー多項式とは、位相幾何学の一分野である結び目理論において、有向絡み目に対する2変数の多項式不変量である。 ホンフリー(HOMFLY)とはこの多項式を見出した6人の数学者(J.Hoste, A.Ocneanu, K.Millett, P.Freyd, W.B.R.Lickorish, D.Yetter)の頭文字を並べたもの(頭字語)である。さらに2人の数学者(J.

新しい!!: 結び目理論とホンフリー多項式 · 続きを見る »

和達三樹

和達 三樹(わだち みき、1945年2月10日 - 2011年9月15日)は、日本の物理学者。東京大学名誉教授。東京理科大学教授。専門は数理物理学、物性基礎論、統計力学。Ph.D.(ニューヨーク州立大学、1970年)。東京都出身。父は和達清夫。.

新しい!!: 結び目理論と和達三樹 · 続きを見る »

アレクサンダー多項式

数学におけるアレクサンダー多項式(あれきさんだーたこうしき、Alexander polynomial; アレクサンダー多項式)は、各種結び目に整数係数多項式を割り当てる結び目不変量である。アレクサンダー多項式は最初に発見されたで、1923年にが発見した。1969年にジョン・コンウェイは、この多項式(の、今日ではアレクサンダー・コンウェイ多項式と呼ばれている形)が、スケイン関係式を用いて計算できることを示した。1984年にジョーンズ多項式が発見されて初めて、アレクサンダー多項式の幾何学的な意味が明らかになった。また、コンウェイは、すぐにアレクサンダー多項式を再研究し、アレクサンダー自身の論文の中で、すでに同様の スケイン関係式 が示されていることを明らかにしている。.

新しい!!: 結び目理論とアレクサンダー多項式 · 続きを見る »

コンウェイ多項式

ンウェイ多項式(たこうしき、Conway polynomial)とは、スケイン関係式によって帰納的に計算される絡み目の(一変数)多項式不変量である。 ここでは、絡み目のダイアグラム K に関する変数zのコンウェイ多項式を P(K) で表そう。 まず自明な結び目に対しては、そのコンウェイ多項式は 1 と定める。コンウェイ多項式が満たすスケイン関係式は次のようになる; 言葉で述べれば、ある交点において正の交点をもつダイアグラム(正則表示)の多項式から、その交点を負の交点にしたできたダイアグラムの多項式を引いたものは、その交点を円滑化してできたダイアグラムの多項式に z をかけたものに等しい。 特に、コンウェイ多項式は負のべきを含まない多項式であることがわかる。 1970年ごろに、ジョン・ホートン・コンウェイによって発見された。変数変換をすれば本質的にアレキサンダー多項式に等しい; として変換すると、変数 t に関するアレキサンダー多項式と等しくなる。このため、両者をまとめてアレキサンダー-コンウェイ多項式と呼ぶこともある。コンウェイ自身はスケイン関係式を発見したが証明しなかったようで、ルイス・カウフマンがザイフェルト行列を用いて初めて証明したようだ。 量子不変量の観点からは、コンウェイ多項式はリー超代数 gl(1|1) から導かれる不変量の特殊値である。.

新しい!!: 結び目理論とコンウェイ多項式 · 続きを見る »

シュプリンガー・ジャパン

ュプリンガー・ジャパン(しゅぷりんがー・じゃぱん・Springer Japan)は、ドイツのSTM(科学・技術・医学)出版社であるシュプリンガー・サイエンス・アンド・ビジネス・メディアの日本法人である。この親会社が出版する書籍・ジャーナルを日本国内で出版している。 同社は、以前にはそれらの日本語翻訳書や和書の出版も行っていたが、2012年に権利を丸善へと譲渡して和書事業から撤退した。これに拠って、シュプリンガー・ジャパンから出版されていた和書は丸善から順次(再)刊行されている。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 結び目理論とシュプリンガー・ジャパン · 続きを見る »

ジョーンズ多項式

数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1983年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結び目 または 絡み目の結び目不変量で、整数を係数とする t^ の ローラン多項式 で与えられる。 ジョーンズの発見以来、後述のように数学・物理学のさまざまな話題との関係が発見され議論されている。.

新しい!!: 結び目理論とジョーンズ多項式 · 続きを見る »

スケイン関係式

イン関係式(スケインかんけいしき、Skein relation/Skein formula)または綾関係式(あやかんけいしき)とは、位相幾何学の一分野である結び目理論において、絡み目に対して多項式を帰納的に定義する際などに用いられる関係式のこと。.

新しい!!: 結び目理論とスケイン関係式 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 結び目理論とタンパク質 · 続きを見る »

タングル

数学の分野において、タングル (tangle) は結び目の一部分を切り取って得られるような幾何的対象のことである。通常次の二種類のいずれかを指す。.

新しい!!: 結び目理論とタングル · 続きを見る »

サイエンス社

株式会社サイエンス社(サイエンスしゃ、英称:SAIENSU-SHA Co.,Ltd.)は、東京都渋谷区千駄ヶ谷にある日本の出版社である。.

新しい!!: 結び目理論とサイエンス社 · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 結び目理論と円周 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: 結び目理論と共立出版 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 結び目理論と球面 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 結び目理論と素数 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 結び目理論と群論 · 続きを見る »

結び目

結び目(むすびめ)とは、一般に紐や糸を結び合わせたところ、結んで作った瘤(こぶ)のことである。.

新しい!!: 結び目理論と結び目 · 続きを見る »

結び目 (数学)

数学の特に低次元位相幾何学における結び目(むすびめ、knot; 結び糸)は、円周 の三次元ユークリッド空間 への埋め込みを、適当なホモトピーの違いを除いて考えるものである。このような数学における標準的な結び目の概念と、日常的な概念としての結び目との間の著しい違いは、数学的な結び目は閉曲線—つまり、結んだり解いたりするための「端」が存在しない—となっている点である。また、数学的な結び目に摩擦や厚みと言った物理学的性質も持っていない(そのような性質を勘案した結び目の数学的定義が無いわけではないが)。また、より高次化した の への埋め込み—特に、 のとき—をも「結び目」と呼ぶことがある。結び目を研究する数学の分野は結び目理論と呼ばれ、グラフ理論にも多くの単純な関係がある。.

新しい!!: 結び目理論と結び目 (数学) · 続きを見る »

絡み数

絡み数2の有向絡み目 絡み数(からみすう、Linking number)とは、数学において、3次元空間内の2つの有向閉曲線について片方がもう片方の周りをどちらの向きに何回周っているかを表す整数である。位相幾何学の一分野である結び目理論においては、2成分の有向絡み目に対して定義される不変量といえる。.

新しい!!: 結び目理論と絡み数 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 結び目理論と統計力学 · 続きを見る »

組み紐 (数学)

ブレイドの例 数学における組み紐(くみひも)またはブレイド (braid) とは、垂れ下がる何本かの紐を適当に編んでできる図形を抽象化した数学的対象である。組み紐全体の集合が群を成すこと、幾何的対象の絡みを表す様子として次元がもっとも低いものであることなどから多様な分野に姿を現す。.

新しい!!: 結び目理論と組み紐 (数学) · 続きを見る »

異性体

性体(いせいたい、、発音:()とは同じ数、同じ種類の原子を持っているが、違う構造をしている物質のこと。分子A1と分子A2が同一分子式で構造が異なる場合、A1はA2の異性体であり、A2はA1の異性体である。また同一分子式の一群の化合物をAと総称した場合、A1もA2もAの異性体である。「ジエチルエーテルはブタノールの異性体である」というのが前者の使い方であり、「ブタノールの構造異性体は4種類ある」というのが後者の使い方である。分子式C4H10Oの化合物の構造異性体と言えば、ブタノールに加えてジエチルエーテルやメチルプロピルエーテルも含まれる。 大多数の有機化合物のように多数の原子の共有結合でできた分子化合物は異性体を持ちうる。ひとつの中心原子に複数種類の配位子が配位した錯体は異性体を持ちうる。 異性体を持つという性質、異性体を生じる性質を異性(isomerism、発音:または)という。イェンス・ベルセリウスが、「同じ部分が一緒になっている」ことを意味するギリシャ語ιςομερηςから1830年に命名した。.

新しい!!: 結び目理論と異性体 · 続きを見る »

鏡像

鏡像(きょうぞう)とは一般的な意味では、鏡に映った像のこと。一般的な意味での鏡像は、数学的意味での鏡像と、光の反射の性質によってつながっている。鏡面が完全に平坦ならば鏡像は元の図形と合同になるが、凹面鏡や凸面鏡のように曲面の場合はその限りではない。.

新しい!!: 結び目理論と鏡像 · 続きを見る »

蝶結び

蝶結び 蝶結び(ちょうむすび)または蝶々結び(ちょうちょむすび)とは、紐の端と端をつなげる結び方のひとつ。花結び(はなむすび)ともいうが、花結びという語句は伝統工芸の飾り結びを指すのにも用いられる。英語圏ではシューレース・ノット()、ボウ・ノット()などという。.

新しい!!: 結び目理論と蝶結び · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 結び目理論と距離空間 · 続きを見る »

量子不変量

数学の一分野である結び目理論において、結び目、あるいは、絡み目の量子不変量(りょうしふへんりょう、quantum invariant)は、結び目補空間の(surgery)の表現である色つき(colored)ジョーンズ多項式の線型和である.

新しい!!: 結び目理論と量子不変量 · 続きを見る »

自明な結び目

自明な結び目(じめいなむすびめ、Trivial knot)または平凡な結び目(へいぼんなむすびめ)とは、位相幾何学の一分野である結び目理論において、「全く結ばれていない」という結び目のことである。3次元空間内の(2次元)円板の境界を標準的な自明な結び目とすれば、それと同値な結び目は全て自明な結び目と考える。自明な結び目は解けている(Unknot)ともいう。 例えば、あやとりで使う紐は(どんなに複雑な形をつくったとしても)自明な結び目と考えることができる。 1961年、ヴォルフガング・ハーケンによって、与えられた結び目が自明な結び目かどうかを判定するアルゴリズムが発見されている。 いくつかの自明な結び目を絡み合わないように並べたものは自明な絡み目という。.

新しい!!: 結び目理論と自明な結び目 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 結び目理論と連続写像 · 続きを見る »

連結和

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。 このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。.

新しい!!: 結び目理論と連結和 · 続きを見る »

河内明夫

河内 明夫(Kawauchi, Akio、かわうち あきお、1948年10月 - )は、日本の数学者。 大阪市立大学名誉教授。大阪市立大学数学研究所(Osaka City University Advanced Mathematical Institute.

新しい!!: 結び目理論と河内明夫 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 結び目理論と朝倉書店 · 続きを見る »

日本評論社

日本評論社(にほんひょうろんしゃ)は、日本の出版社の一つである。略称 nippyo。『法律時報』『法学セミナー』『経済セミナー』『数学セミナー』『こころの科学』『からだの科学』で知られる。.

新しい!!: 結び目理論と日本評論社 · 続きを見る »

1923年

記載なし。

新しい!!: 結び目理論と1923年 · 続きを見る »

1990年

この項目では、国際的な視点に基づいた1990年について記載する。.

新しい!!: 結び目理論と1990年 · 続きを見る »

1991年

この項目では、国際的な視点に基づいた1991年について記載する。.

新しい!!: 結び目理論と1991年 · 続きを見る »

1992年

この項目では、国際的な視点に基づいた1992年について記載する。.

新しい!!: 結び目理論と1992年 · 続きを見る »

1993年

この項目では、国際的な視点に基づいた1993年について記載する。.

新しい!!: 結び目理論と1993年 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: 結び目理論と1995年 · 続きを見る »

1996年

この項目では、国際的な視点に基づいた1996年について記載する。.

新しい!!: 結び目理論と1996年 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: 結び目理論と1998年 · 続きを見る »

1999年

1990年代最後の年であり、1000の位が1になる最後の年でもある。 この項目では、国際的な視点に基づいた1999年について記載する。.

新しい!!: 結び目理論と1999年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: 結び目理論と2000年 · 続きを見る »

2002年

この項目では、国際的な視点に基づいた2002年について記載する。.

新しい!!: 結び目理論と2002年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: 結び目理論と2003年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: 結び目理論と2007年 · 続きを見る »

2012年

この項目では、国際的な視点に基づいた2012年について記載する。.

新しい!!: 結び目理論と2012年 · 続きを見る »

8の字結び目

8の字結び目(はちのじむすびめ、Figure-eight knot)または四結び目とは、位相幾何学の一分野である結び目理論において、交点数が4の唯一の結び目である。右図はその射影図のひとつ。 カール・フリードリヒ・ガウスの弟子のヨハン・ベネディクト・リスティングが熱心に研究したことから、リスティングの結び目(Listing's knot)と呼ばれることもある。.

新しい!!: 結び目理論と8の字結び目 · 続きを見る »

ここにリダイレクトされます:

結び目不変量絡み目

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »