ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ローラン級数

索引 ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

24 関係: 可換体多項式局所体ミッタク=レフラーの定理ピエール・アルフォンス・ローランテイラー展開アニュラスカール・ワイエルシュトラスコンパクト一様収束コーシーの積分公式冪級数円板商体線積分畳み込み留数複素解析極 (複素解析)正則関数指数関数有限体数列1841年1843年

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ローラン級数と可換体 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: ローラン級数と多項式 · 続きを見る »

局所体

局所体(きょくしょたい、local field)とは、離散付値に対して完備であり、剰余体が有限体である付値体のことである。 局所体の定義としては、上に挙げたもの以外にもいくつかあり、そのうちの代表的なものを挙げる。これらは互いに同値な定義である。.

新しい!!: ローラン級数と局所体 · 続きを見る »

ミッタク=レフラーの定理

複素解析において、ミッタク=レフラーの定理(Mittag-Leffler's theorem)とは、前もって与えられた極を持つ有理型関数の存在に関する定理である。一方、ワイエルシュトラスの因数分解定理は、前もって与えられた零点を持つ正則関数の存在を主張する定理であり、本定理と対をなす。この定理の名称は、ヨースタ・ミッタク=レフラー (Gösta Mittag-Leffler) に因んでいる。.

新しい!!: ローラン級数とミッタク=レフラーの定理 · 続きを見る »

ピエール・アルフォンス・ローラン

ピエール・アルフォンス・ローラン ピエール・アルフォンス・ローラン(Pierre Alphonse Laurent、1813年7月18日 - 1854年9月2日)は、フランスの数学者。ローラン級数に名を残している。.

新しい!!: ローラン級数とピエール・アルフォンス・ローラン · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: ローラン級数とテイラー展開 · 続きを見る »

アニュラス

数学において、アニュラス(annulus, ラテン語で「小さい環」を意味する)あるいは円環とは、輪の形をした対象、特に 2 つの同心円によって囲まれた領域である。 開アニュラスは円柱側面(円筒) や に同相である。 アニュラスの面積は半径 の大きい円の面積から半径 の小さい円の面積を引いたものである: アニュラスの面積はアニュラスの中に完全に置ける最長の線分の長さ(添付図の )として得られる。これはピタゴラスの定理によって証明できる。アニュラスの中に完全に置ける最長の線分は小さい円に接し、その点における半径と直角をなす。したがって と は斜辺 の直角三角形の残りの辺の長さであり、面積は次で与えられる: 面積は微分積分学によっても計算できる。アニュラスを幅 、面積 の無限個の無限小アニュラスに分割し、 から まで積分する: ラジアンに対する "扇形"(円環扇形)の面積は.

新しい!!: ローラン級数とアニュラス · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: ローラン級数とカール・ワイエルシュトラス · 続きを見る »

コンパクト一様収束

数学においてコンパクト一様収束あるいはコンパクト収束、あるいは広義一様収束 (compact convergence, uniform convergence on compact sets) とは、一様収束の概念を一般化したのタイプである。コンパクト開位相と関係する。.

新しい!!: ローラン級数とコンパクト一様収束 · 続きを見る »

コーシーの積分公式

ーシーの積分公式(コーシーのせきぶんこうしき)は、コーシーの第2定理、コーシーの積分表示 (Cauchy's integral expression) ともいわれ、オーギュスタン=ルイ・コーシーによって示された、ガウス平面上のある領域において正則な関数の周回積分についての定理である。.

新しい!!: ローラン級数とコーシーの積分公式 · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: ローラン級数と冪級数 · 続きを見る »

円板

閉包である。 各種幾何学における円板(えんばん、disk; disc と綴ることもある)は、平面上で円で囲まれた有界領域である。 円板はその境界となる円周を「すべて含む」または「全く含まない」ことを以ってそれぞれ「閉円板」または「開円板」という。.

新しい!!: ローラン級数と円板 · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: ローラン級数と商体 · 続きを見る »

線積分

数学における線積分(せんせきぶん、line integral; 稀に, )は、曲線に沿って評価された函数の値についての積分の総称。ベクトル解析や複素解析において重要な役割を演じる。閉曲線に沿う線積分を特に閉路積分(へいろせきぶん)あるいは周回積分(しゅうかいせきぶん)と呼び、専用の積分記号 \oint が使われることもある。周回積分法は複素解析における重要な手法の一つである。 線積分の対象となる函数は、スカラー場やベクトル場などとして与える。線積分の値は場の考えている曲線上での値に曲線上のあるスカラー函数(弧長、あるいはベクトル場については曲線上の微分ベクトルとの点乗積)による重み付けをしたものを「足し合わせた」ものとなる。この重み付けが、区間上で定義する積分と線積分とを分ける点である。 物理学における多くの単純な公式が、線積分で書くことによって自然に、連続的に変化させた場合についても一般化することができるようになる。例えば、力学的な仕事を表す式 から曲線 に沿っての仕事を表す式 を得る。例えば電場や重力場において運動する物体の成す仕事が計算できる。.

新しい!!: ローラン級数と線積分 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: ローラン級数と畳み込み · 続きを見る »

留数

数学、殊に複素解析学における留数(りゅうすう、residue)は、孤立特異点を囲む経路に沿う有理型関数の複素線積分により得られる複素数である。.

新しい!!: ローラン級数と留数 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: ローラン級数と複素解析 · 続きを見る »

極 (複素解析)

数学の一分野の複素解析において、有理型函数の極 (pole) は、 の における特異点のような振る舞いをする特異点の一種である。点 が函数 の極であるとき、 が に近づくと函数は無限遠点へ近づく。.

新しい!!: ローラン級数と極 (複素解析) · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: ローラン級数と正則関数 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: ローラン級数と指数関数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: ローラン級数と有限体 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: ローラン級数と数列 · 続きを見る »

1841年

記載なし。

新しい!!: ローラン級数と1841年 · 続きを見る »

1843年

記載なし。

新しい!!: ローラン級数と1843年 · 続きを見る »

ここにリダイレクトされます:

ローラン多項式ローラン展開ローラン級数展開形式ローラン級数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »