ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アレクサンダー多項式

索引 アレクサンダー多項式

数学におけるアレクサンダー多項式(あれきさんだーたこうしき、Alexander polynomial; アレクサンダー多項式)は、各種結び目に整数係数多項式を割り当てる結び目不変量である。アレクサンダー多項式は最初に発見されたで、1923年にが発見した。1969年にジョン・コンウェイは、この多項式(の、今日ではアレクサンダー・コンウェイ多項式と呼ばれている形)が、スケイン関係式を用いて計算できることを示した。1984年にジョーンズ多項式が発見されて初めて、アレクサンダー多項式の幾何学的な意味が明らかになった。また、コンウェイは、すぐにアレクサンダー多項式を再研究し、アレクサンダー自身の論文の中で、すでに同様の スケイン関係式 が示されていることを明らかにしている。.

29 関係: 単元同値多項式主イデアル三次元球面ポアンカレ双対モノドロミーフレアーホモロジーオイラー標数コバノフホモロジーコンウェイ多項式ザイフェルト行列ザイフェルト曲面シュプリンガー・ジャパンジョン・ホートン・コンウェイジョーンズ多項式スケイン関係式サイバーグ・ウィッテン不変量群の表示結び目理論結び目群結び目補空間環上の加群違いを除いて行列表示連結和河内明夫数学4次元多様体

単元

単元(たんげん).

新しい!!: アレクサンダー多項式と単元 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: アレクサンダー多項式と同値 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: アレクサンダー多項式と多項式 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: アレクサンダー多項式と主イデアル · 続きを見る »

三次元球面

数学における三次元(超)球面(さんじげんきゅうめん、3-sphere; 3-球面)あるいはグローム (glome) は、通常の球面の高次元版である超球面の特別の場合である。四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。.

新しい!!: アレクサンダー多項式と三次元球面 · 続きを見る »

ポアンカレ双対

数学において,ポワンカレ双対性定理は,多様体のホモロジー群とコホモロジー群の構造に関する基本的な結果である.名前はアンリ・ポワンカレにちなむ.定理の主張は以下のようである. を 次元の向き付けられた閉多様体(コンパクトかつ境界を持たない)とすると, の 次コホモロジー群はすべての整数 に対して 次ホモロジー群と同型である: ポワンカレ双対性は,係数環に関して向きを取る限り,任意の係数環に対して成り立つ.特に,すべての多様体は 2 を法として一意的な向き付けを持つので,ポワンカレ双対性は向きの仮定なしに 2 を法として成り立つ..

新しい!!: アレクサンダー多項式とポアンカレ双対 · 続きを見る »

モノドロミー

数学では、モノドロミー (monodromy) は、解析学、代数トポロジー、代数幾何学や微分幾何学の観点から特異点の周りで対象がどのように振舞うかを研究する。名前が意味しているように、モノドロミーの基本的な意味は、「ひとりで回る」という意味である。被覆写像と被覆写像の分岐点への退化とは密接に関係している。モノドロミー現象が生ずることは、定義したある函数が一価性に失敗することを意味し、特異点の周りを回る経路を動くことである。このモノドロミーの失敗は、モノドロミー群を定義することによりうまく測ることができる。モノドロミー群は、「回る」ことに伴い起きることをエンコードするデータに作用する群である。.

新しい!!: アレクサンダー多項式とモノドロミー · 続きを見る »

フレアーホモロジー

数学において、フレアーホモロジー(Floer homology)は、シンプレクティック幾何学や低次元トポロジーの研究に使用される有用なツールである。フレアーホモロジーは、有限次元のモース理論の無限次元の類似として発生した高級な不変量である。アンドレアス・フレアー(Andreas Floer)は、現在はハミルトニアンフレアーホモロジーと呼ばれているフレアーホモロジーの最初のバージョンを導入し、シンプレクティック幾何学のアーノルド予想の証明に使った。フレアーは、これと密接に関連するシンプレクティック多様体のラグランジアン部分多様体の理論を開発した。フレアーは、また、シンプレクティック多様体のラグランジアン部分多様体に密接に関連する理論も開発した。フレアーが第三番目に構成したことは、ヤン・ミルズ汎函数を使い、ホモロジー群を閉 3次元多様体へ関連付けた。これらの理論とそれの適用は、3次元や 4次元トポロジーと同様に、シンプレクティック多様体や接触多様体の現在の研究で、基本的な役割を果たしている。 フレアーホモロジーは、無限次元多様体とその上の実数値函数をある興味深い対象へ結び付けることにより定義される。例えば、シンプレクティック幾何学のバージョンでは、フレアーホモロジーは、シンプレクティック作用汎函数をシンプレクティック多様体の自由ループ空間へ結び付ける。、3次元多様体の((instanton))バージョンでは、3次元多様体上のSU(2)-接続の空間へ結び付ける。おまかに言うと、フレアーホモロジーは、無限次元多様体の上の自然な函数から計算されるモースホモロジーである。この自然な函数は、シンプレクティックな場合は、シンプレクティック作用を持つシンプレクティック多様体の自由ループ空間であり、3次元多様体の場合は、チャーン-サイモンズ汎函数を持つ 3次元多様体上の SU(2)-接続の空間である。大まかには、フレアーホモロジーは、無限次元多様体上の函数のモースホモロジーである。フレアーチェーン複体は、函数の臨界点(critical point)(もしくは、臨界点のある集まりでもよい)で張られるアーベル群から構成される。チェーン複体の微分は、臨界点と臨界点と(従って、臨界点の集まり)を結ぶ函数の勾配の力線の数を数えることにより定義される。このベクトル空間の線型な自己準同型は、2つの臨界点を結ぶ函数の勾配の力線を数えることで定義される。フレアーホモロジーは、このチェーン複体のホモロジーである。 フレアーのアイデアをうまく適用できる状況では、勾配の力線の方程式が、幾何学的解析的に扱いやすい典型的な方程式である。シンプレクティックフレアーホモロジーに対し、ループ空間の中の経路の勾配の力線の方程式は、注目しているシンプレクティック多様体への円筒形(cylinder)(ループの経路の全空間)からの写像のコーシー・リーマンの方程式(の摂動バージョン)であり、解は(pseudoholomorphic curves)として知られている。従って、(Gromov compactness theorem)は、微分が well-defined で、二乗が 0 となるので、フレアーホモロジーを定義することができることを示した。インスタントンフレアーホモロジーに対し、勾配の力線の方程式はまさに、実直線と交差する 3次元多様体上のヤン・ミルズ方程式である。.

新しい!!: アレクサンダー多項式とフレアーホモロジー · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: アレクサンダー多項式とオイラー標数 · 続きを見る »

コバノフホモロジー

数学において、コバノフホモロジー(Khovanov homology)は、鎖複体のホモロジーとしてできる向きづけられた結び目の不変量である。コバノフホモロジーはジョーンズ多項式のとして考えられる。 コバノフホモロジーは1990年代の終わりに、(Mikhail Khovanov)により導入された。彼は当時はカリフォルニア大学デービス校に在籍しており、現在はコロンビア大学に所属している。.

新しい!!: アレクサンダー多項式とコバノフホモロジー · 続きを見る »

コンウェイ多項式

ンウェイ多項式(たこうしき、Conway polynomial)とは、スケイン関係式によって帰納的に計算される絡み目の(一変数)多項式不変量である。 ここでは、絡み目のダイアグラム K に関する変数zのコンウェイ多項式を P(K) で表そう。 まず自明な結び目に対しては、そのコンウェイ多項式は 1 と定める。コンウェイ多項式が満たすスケイン関係式は次のようになる; 言葉で述べれば、ある交点において正の交点をもつダイアグラム(正則表示)の多項式から、その交点を負の交点にしたできたダイアグラムの多項式を引いたものは、その交点を円滑化してできたダイアグラムの多項式に z をかけたものに等しい。 特に、コンウェイ多項式は負のべきを含まない多項式であることがわかる。 1970年ごろに、ジョン・ホートン・コンウェイによって発見された。変数変換をすれば本質的にアレキサンダー多項式に等しい; として変換すると、変数 t に関するアレキサンダー多項式と等しくなる。このため、両者をまとめてアレキサンダー-コンウェイ多項式と呼ぶこともある。コンウェイ自身はスケイン関係式を発見したが証明しなかったようで、ルイス・カウフマンがザイフェルト行列を用いて初めて証明したようだ。 量子不変量の観点からは、コンウェイ多項式はリー超代数 gl(1|1) から導かれる不変量の特殊値である。.

新しい!!: アレクサンダー多項式とコンウェイ多項式 · 続きを見る »

ザイフェルト行列

ある与えられた有向ザイフェルト曲面 F 上の(整係数)一次元ホモロジー群H_1(F;\mathbb)中の任意の二つの元 x, y に対し、それらの纏絡数 (linking number) を対応させる線形写像 φ:H_1(F;\mathbb)\times H_1(F;\mathbb)\rightarrow\mathbbを考える(これをザイフェルト形式と呼ぶ)。ただし、ここで x, y の纏絡数とは、 x を曲面の表方向に少し浮かせたものと y (あるいは y を裏の方に浮かせたものと x )との纏絡数とする。ホモロジー群の一つの基底に関するザイフェルト形式の表現行列 V_\phi を F の(基底に附随した)ザイフェルト行列という。したがってそれは基底の取り方に依存するが、ザイフェルト曲面 F のベッチ数を β としたとき、いずれも β 次の正方行列となる。 F がある有向絡み目 L のザイフェルト曲面であるとき、 V_\phiを L の(ザイフェルト曲面 F 及び基についての)ザイフェルト行列という。 さいふえるときようれつ さいふえるときようれつ.

新しい!!: アレクサンダー多項式とザイフェルト行列 · 続きを見る »

ザイフェルト曲面

イフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω.

新しい!!: アレクサンダー多項式とザイフェルト曲面 · 続きを見る »

シュプリンガー・ジャパン

ュプリンガー・ジャパン(しゅぷりんがー・じゃぱん・Springer Japan)は、ドイツのSTM(科学・技術・医学)出版社であるシュプリンガー・サイエンス・アンド・ビジネス・メディアの日本法人である。この親会社が出版する書籍・ジャーナルを日本国内で出版している。 同社は、以前にはそれらの日本語翻訳書や和書の出版も行っていたが、2012年に権利を丸善へと譲渡して和書事業から撤退した。これに拠って、シュプリンガー・ジャパンから出版されていた和書は丸善から順次(再)刊行されている。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: アレクサンダー多項式とシュプリンガー・ジャパン · 続きを見る »

ジョン・ホートン・コンウェイ

ョン・ホートン・コンウェイ ジョン・ホートン・コンウェイ(John Horton Conway, 1937年12月26日 - )はイギリスの数学者。現プリンストン大学教授。.

新しい!!: アレクサンダー多項式とジョン・ホートン・コンウェイ · 続きを見る »

ジョーンズ多項式

数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1983年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結び目 または 絡み目の結び目不変量で、整数を係数とする t^ の ローラン多項式 で与えられる。 ジョーンズの発見以来、後述のように数学・物理学のさまざまな話題との関係が発見され議論されている。.

新しい!!: アレクサンダー多項式とジョーンズ多項式 · 続きを見る »

スケイン関係式

イン関係式(スケインかんけいしき、Skein relation/Skein formula)または綾関係式(あやかんけいしき)とは、位相幾何学の一分野である結び目理論において、絡み目に対して多項式を帰納的に定義する際などに用いられる関係式のこと。.

新しい!!: アレクサンダー多項式とスケイン関係式 · 続きを見る »

サイバーグ・ウィッテン不変量

数学では、サイバーグ・ウィッテン不変量(Seiberg–Witten invariant)は、サイバーグ・ウィッテン理論を使ったコンパクトな 4次元多様体の不変量であり、により導入された。(Seiberg–Witten gauge theory)は、で研究された。 サイバーグ・ウィッテン不変量は、ドナルドソン不変量と似ていて、滑らかな 4次元多様体にかんする同様な(少しより強い)結果を証明することに使うことができる。サイバーグ・ウィッテン不変量は、ドナルドソン不変量に比べて、技術的には非常に容易である。たとえば、サイバーグ・ウィッテン方程式の解のモジュライ空間は、コンパクトとなる傾向があり、従って、ドナルドソン理論のコンパクト化の中の難しい問題を回避することができる。 さらに詳しいサイバーグ・ウィッテン不変量の記述は、,,,, を参照。シンプレクティック多様体とグロモフ・ウィッテン不変量の関係については、を参照。早期の歴史については、を参照。.

新しい!!: アレクサンダー多項式とサイバーグ・ウィッテン不変量 · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: アレクサンダー多項式と群の表示 · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: アレクサンダー多項式と結び目理論 · 続きを見る »

結び目群

数学において、結び目とは、1次元円周の3次元ユークリッド空間の中への埋め込みのことである。結び目 K の結び目群 (knot group) とは、R3 における K の結び目補空間の基本群 として定義される。 他にも結び目を3次元球面の中へ埋め込んで考えることもあり、その場合、結び目群は、S3 における結び目の補空間の基本群である。 3, Other conventions consider knots to be embedded in the 3-sphere, in which case the knot group is the fundamental group of its complement in S^3.-->.

新しい!!: アレクサンダー多項式と結び目群 · 続きを見る »

結び目補空間

数学の結び目理論において、 (tame knot) K の結び目補空間 (knot complement) は結び目の周囲の3次元空間である。正確には、K が3次元多様体 M(とすることが最も多い)における結び目であるとする。N を K のとする。したがって N はである。すると結び目補空間は、N の補空間である: 結び目補空間 XK はコンパクトなである。XK の境界と近傍 N の境界は2次元トーラスに同相である。周囲の多様体 M は3次元球面であることもあるが、M が何かを決めるには文脈が必要である。絡み目補空間 (link complement) も同様に定義する。 結び目群のような多くの結び目不変量は実は結び目補空間の不変量である。周囲の空間が3次元球面の場合は(補空間を考えることで結び目の)情報は全く失われない:により、結び目はその補空間によって決定されるのである。つまり、K と K′ が同相な補空間を持つ2つの結び目のとき、一方の結び目を他方へと写す3次元球面の同相写像が存在する。.

新しい!!: アレクサンダー多項式と結び目補空間 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: アレクサンダー多項式と環上の加群 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: アレクサンダー多項式と違いを除いて · 続きを見る »

行列表示

量子力学において、行列表示(ぎょうれつひょうじ)とは、演算子を行列、状態ベクトルを縦ベクトルとして計算する方法である。 実際に計算機を用いて計算を行う場合は、微積分などの演算子を使う形式よりも行列表示の方が扱いやすい。.

新しい!!: アレクサンダー多項式と行列表示 · 続きを見る »

連結和

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。 このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。.

新しい!!: アレクサンダー多項式と連結和 · 続きを見る »

河内明夫

河内 明夫(Kawauchi, Akio、かわうち あきお、1948年10月 - )は、日本の数学者。 大阪市立大学名誉教授。大阪市立大学数学研究所(Osaka City University Advanced Mathematical Institute.

新しい!!: アレクサンダー多項式と河内明夫 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: アレクサンダー多項式と数学 · 続きを見る »

4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

新しい!!: アレクサンダー多項式と4次元多様体 · 続きを見る »

ここにリダイレクトされます:

アレキサンダー多項式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »