ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

極点

索引 極点

数学において、ある実ベクトル空間内の凸集合 S の頂点、端点あるいは極点(きょくてん、)とは、S の任意の二点を結ぶ開線分に含まれない点のことを言う。直観的に言えば、極点は S の頂点 (vertex) と見做すことのできるような点である。.

15 関係: 局所凸位相ベクトル空間ハーパーコリンズバナッハ空間ポリトープボホナー積分ベクトル空間クレイン=ミルマンの定理コンパクト空間凸包凸集合線分頂点閉集合有界数学

局所凸位相ベクトル空間

関数解析学および関連する数学の分野において、局所凸位相ベクトル空間(きょくしょとついそうベクトルくうかん、)あるいは局所凸空間(locally convex space)は、ノルム空間を一般化する位相ベクトル空間(TVS)の例である。それらは、均衡かつ併呑な凸集合の平行移動によって位相が生成されるような位相ベクトル空間として定義される。または代わりに、それらは半ノルムの族を伴うベクトル空間として定義され、その族に関して位相を定義することが出来る。一般にこのような空間は必ずしもノルム化可能ではないが、零ベクトルに対する凸局所基の存在はハーン=バナッハの定理の成立を保証する上で十分に強く、その結果として連続線型汎函数に関する豊富な理論がもたらされた。 フレシェ空間は、距離化可能かつその距離に関して完備であるような局所凸空間である。それらは、ノルムに関する完備ベクトル空間であるようなバナッハ空間の一般化である。.

新しい!!: 極点と局所凸位相ベクトル空間 · 続きを見る »

ハーパーコリンズ

ハーパーコリンズ(英: HarperCollins)は出版社であり、ニューズ・コーポレーションの子会社。イギリスの William Collins, Sons and Co Ltd.

新しい!!: 極点とハーパーコリンズ · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 極点とバナッハ空間 · 続きを見る »

ポリトープ

初等幾何学における超多面体(ちょうためんたい、poly­tope; ポリトープ)は、平坦な縁を持つ幾何学的対象で、任意の有限次元において存在する。各次元 における超多面体を -次元(超)多面体 (-poly­tope) と呼ぶ。例えば二次元多面体は多角形、三次元多面体は通常の多面体である。多辺形や多面体のときと同様、「中身の詰まった」(solid) な -次元多面体だけでなく、一般にはその境界である図形を指して -次元多面体と呼ぶことが多々あるので、文脈に注意すべきである。 超多面体の更なる一般化として、非有界なや、曲がった多様体のや単体分割あるいは空間充填(例えば、、および集合論的ななどが現れる理論もある。 三次元より高次の超多面体を最初に考え出したのはである。ドイツの数学者によりpoly­topが造語され、それを として英語に導入したのはアメリカ人数学者のである。 語義は "poly-"(多くの)+ "-tope"(表面)であり「直訳」すれば「多面体」である。"" には多胞体(たほうたい)との訳語もある。これは頂点、辺、面に引き続く次元数 3 の部分を「胞」または「胞体」(cell) と呼ぶことから、多面体のより高次の対象との意図で用いられるものだが、しかし多数の胞からなる対象としての四次元の超多面体 (4-polytope) に限って多胞体と呼ぶ語法も自然である。なお、四次元超多面体には "poly­choron" (χώρος は「部屋」) との名称もある。 以下、誤解の虞があると思われる場合には多胞体の語はなるべく避けるものとする。.

新しい!!: 極点とポリトープ · 続きを見る »

ボホナー積分

数学におけるボホナー積分(ボホナーせきぶん、Bochner integral)は、サロモン・ボホナーに名を因む、(単函数の積分の極限としての)ルベーグ積分のバナッハ空間に値をとる函数への拡張である。.

新しい!!: 極点とボホナー積分 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 極点とベクトル空間 · 続きを見る »

クレイン=ミルマンの定理

数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、X を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、K を X のコンパクトな凸部分集合とするとき、K はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、K を含むすべての X の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 とによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 その定理より以前に、ヘルマン・ミンコフスキーは、X が有限次元であるなら K はその極点の集合の凸包と等しいことを示していた。クレイン=ミルマンの定理は、その結果を任意の局所凸空間 X に対して一般化するものであったが、閉包が必要となり得るという注意も付されていた。.

新しい!!: 極点とクレイン=ミルマンの定理 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 極点とコンパクト空間 · 続きを見る »

凸包

数学における凸包(とつほう、convex hull)または凸包絡(とつほうらく、convex envelope)は、与えられた集合を含む最小の凸集合である。例えば がユークリッド平面内の有界な点集合のとき、その凸包は直観的には をゴム膜で包んだときにゴム膜が作る図形として視認することができる。 精確に言えば、 の凸包は を含む全ての凸集合の交わり、あるいは同じことだが に属する点の凸結合全体の成す集合として定義される。後者の定式化であれば、凸包をユークリッド空間だけでなく任意の実線型空間や、より一般にに対して考えることができる。 平面上あるいは低次元ユークリッド空間内の有限点集合に対してその凸包を計算するアルゴリズム問題は、計算幾何学の基本的問題の一つである。.

新しい!!: 極点と凸包 · 続きを見る »

凸集合

ユークリッド空間における物体が凸(とつ、convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。.

新しい!!: 極点と凸集合 · 続きを見る »

線分

線分の幾何学的な定義 幾何学における線分(せんぶん、Line segment)とは2つの点に挟まれた直線の部分であり、それら端点の間にあるどの点も含む。 通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 線分の例として、三角形や四角形の辺が挙げられる。もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。.

新しい!!: 極点と線分 · 続きを見る »

頂点

頂点(ちょうてん、vertex)とは角の端にある点のことである。多角形では2本の辺が接しているか交わっている点、多面体では3本以上の辺が共有している点のことをいう。直観的には図形の周上にある点のうち周辺のどの点よりも突出していて"尖った点"のことを頂点という。転じて日常語としては最高点を指し、「頂点に上り詰める」等と言う。 図ではA,B,Cの3点が頂点 一般にn角形には頂点はn個あり、辺の本数に等しい。座標平面上にある図形ではその頂点を含む範囲で連続であっても微分不可能である。 また曲線が極大値や極小値をとる点のことを頂点ということもある。例えば放物線 y.

新しい!!: 極点と頂点 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 極点と閉集合 · 続きを見る »

有界

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。 数学において集合が有界(ゆうかい、bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。 単純閉曲線はそれを境界として平面 '''R'''2 を有界(内側)および非有界(外側)な二つの領域に分ける。.

新しい!!: 極点と有界 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 極点と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »