ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

線分

索引 線分

線分の幾何学的な定義 幾何学における線分(せんぶん、Line segment)とは2つの点に挟まれた直線の部分であり、それら端点の間にあるどの点も含む。 通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 線分の例として、三角形や四角形の辺が挙げられる。もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。.

23 関係: 同値多角形対角線三角形幾何学弦 (数学)区間 (数学)ベクトルベクトル空間円 (数学)凸包四角形空集合線型位相空間直線部分集合閉集合開集合集合連結空間PlanetMath曲線

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 線分と同値 · 続きを見る »

多角形

初等幾何学における多辺形または多角形(たかっけい、polygon; )は、閉あるいは閉曲線を成す、線分の閉じた有限鎖で囲まれた平面図形を言う。多角形を構成するこれら線分をその多角形の辺 (edge, side) と呼び、それらの二つの辺が交わる点をその多角形の頂点 (vertex, corner) と呼ぶ。 個の辺を持つ多角形は -辺形 (-gon) と呼ぶ。例えば三角形は三辺形である。多角形は、より一般の任意次元における超多面体の二次元の例になっている。 多角形に関する基本的な幾何学的概念は特定の目的に応じて様々な方法で適応されてきた。数学においてはしばしば有界な閉折れ線や自己交叉を持たないに限って問題にするため、そのようなもののみ多角形と呼ぶこともある。他方、多角形の境界が自分自身と交わることを許す流儀もあり、その場合星型多角形やその他のが形作られる。その他の多角形の一般化については後述。 多角形 (poly­gon) の語は、「多い」を意味するπολύς と「角」を意味するγωνία に由来する.

新しい!!: 線分と多角形 · 続きを見る »

対角線

対角線(たいかくせん、diagonal)は、多角形上の異なる2つの頂点同士を結ぶ線分のうち辺を除く線分のことである。三角形以外の多角形は全て2本以上の対角線を持つ。 ある多角形の全ての内角が180度未満であるならば全ての対角線はその多角形の内部に存在し、その逆もまた成り立つ。 n角形の対角線の本数dは異なるn個の頂点から2点を選ぶ組み合わせから隣り合った2つの頂点同士を結ぶ線(つまり辺)の本数nを引くことで次のように計算できる。 正五角形の5本全ての対角線をつなげると五芒星になる。これは5本の線分を用いて辺を共有しない5つの三角形を作る方法としても知られる。 正六角形の9本の対角線のうち短い6本を組み合わせた図形はダビデの星の形として有名な六芒星になる。.

新しい!!: 線分と対角線 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 線分と三角形 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 線分と幾何学 · 続きを見る »

弦 (数学)

弦(げん、chord)とは、曲線上の2点を結ぶ線分のことである。 弦の両端の2点を A, B としたとき、直線AB をその曲線の割線 (secant) という。また、弦AB と、曲線の弧AB からなる閉曲線およびその内部を弓形という。.

新しい!!: 線分と弦 (数学) · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: 線分と区間 (数学) · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 線分とベクトル · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 線分とベクトル空間 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: 線分と円 (数学) · 続きを見る »

凸包

数学における凸包(とつほう、convex hull)または凸包絡(とつほうらく、convex envelope)は、与えられた集合を含む最小の凸集合である。例えば がユークリッド平面内の有界な点集合のとき、その凸包は直観的には をゴム膜で包んだときにゴム膜が作る図形として視認することができる。 精確に言えば、 の凸包は を含む全ての凸集合の交わり、あるいは同じことだが に属する点の凸結合全体の成す集合として定義される。後者の定式化であれば、凸包をユークリッド空間だけでなく任意の実線型空間や、より一般にに対して考えることができる。 平面上あるいは低次元ユークリッド空間内の有限点集合に対してその凸包を計算するアルゴリズム問題は、計算幾何学の基本的問題の一つである。.

新しい!!: 線分と凸包 · 続きを見る »

四角形

四角形(しかくけい、しかっけい、tetragon)は、平面上で4本の直線に囲まれた平面の一部を指す。多角形の一種で、4つの頂点と4本の辺を持つ。.

新しい!!: 線分と四角形 · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 線分と空集合 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 線分と線型位相空間 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 線分と直線 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 線分と辺 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 線分と部分集合 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 線分と閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 線分と開集合 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 線分と集合 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 線分と連結空間 · 続きを見る »

PlanetMath

PlanetMath(プラネットマス)はユーザーが協力して作成するフリーの数学辞典のウェブサイト。人気の数学辞典サイトMathWorldが訴訟によって差し止められたことをきっかけに、2000年の秋から開設された。PlanetMath ではピアレビューと厳密性に重点をおき、教育に利用できるようなコンテンツをめざしている。各項目の分類は米国数学会(American Mathematical Society)の発行する数学科目分類(Mathematics Subject Classification)に準拠している。 ライセンスには クリエイティブ・コモンズ・ライセンス (CC-BY) を使用している。ウィキペディアなどとは異なり、各記事に責任者が存在し、それ以外のユーザが勝手にページを書き換えることはできない。ただし、サイト利用者はコメント機能を通して記事の責任者に意見を伝えることができるようになっている。なお、各ページは数学記号の使用を考慮してLaTeXで記述されており、コンテンツ管理には Noösphere という独自に開発されたソフトウェアを使用している。英語版ウィキペディアでは、PlanetMath の内容をウィキペディアに活用するプロジェクトがある。.

新しい!!: 線分とPlanetMath · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 線分と曲線 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »