ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ボレル集合

索引 ボレル集合

数学におけるボレル集合(ボレルしゅうごう、Borel set)は、位相空間の開集合系(あるいは閉集合系)から可算回の合併、交叉、差を取ることによって得られる集合の総称である。名称はエミール・ボレルに由来する。 位相空間 X に対し、X 上のボレル集合全体の成す族(ボレル集合族)は完全加法族(σ-集合体)を成し、ボレル集合体 あるいはボレル完全加法族 と呼ばれる。X 上のボレル集合体は、全ての開集合を含む最小の完全加法族である(全ての閉集合を含む最小の完全加法族でもある)。 ボレル集合は測度論において重要である。これは任意のボレル集合体上で定義された測度が空間内の開集合(あるいは閉集合)上での値のみから一意に定まることによる。ボレル集合体上で定義された測度はボレル測度と呼ばれる。ボレル集合およびそれに付随するボレル階層は、記述集合論においても基本的な役割を果たす。 文脈によっては、位相空間の(開集合ではなくて)コンパクト集合の生成するものとしてボレル集合を定めることもある。多くの素性の良い 空間、例えば任意の σ-コンパクトハウスドルフ空間などでは、この定義は先の(開集合を用いた)定義と同値になるが、そうでない病的な空間では違ってくる。.

50 関係: 可分空間可算集合可測関数同型写像実数直線完備距離空間完全加法族差集合位相空間圏 (数学)区間 (数学)マハラムの定理ハウスドルフ空間ポーランド空間ポール・ハルモスボレル測度ニコライ・ルージンベール集合和集合アレキサンダー・ケクリスエミール・ボレルカジミェシュ・クラトフスキコンパクト空間シュプリンガー・サイエンス・アンド・ビジネス・メディア冪集合共通部分 (数学)確率分布確率空間確率論確率測度約数病的な (数学)無理数違いを除いて順序数解析集合記述集合論距離函数距離空間閉集合開集合連分数Mizar極限順序数測度論濃度 (数学)最小の非可算順序数数学数学的帰納法整数

可分空間

数学の位相空間論における可分空間(かぶんくうかん、separable space)とは、可算な稠密部分集合を持つような位相空間をいう。つまり、空間の点列 で、その空間の空でない任意の開集合が少なくとも一つその点列の項を含むものが存在する。 他の可算公理と同様に、可分性は(濃度の言葉を必ずしも用いない)位相空間により適した集合の「大きさの制限」を与えるものである(とはいえハウスドルフの公理の存在においてはこの限りでないが)。特に、可分空間上の連続写像でその像がハウスドルフ空間の部分集合であるようなものは全て、その可算稠密部分集合上の値によって決定される。 一般に、可分性は極めて有用で(幾何学や古典的な解析学で研究されるような空間のクラスに対しては)きわめて緩やかなものと一般に考えられる、空間への技術的仮定である。可分性とそれに関連のある第二可算性の概念の比較は重要である(第二可算のほうが一般には強い条件だが、距離化可能な空間のクラスでは同値になる。.

新しい!!: ボレル集合と可分空間 · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: ボレル集合と可算集合 · 続きを見る »

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

新しい!!: ボレル集合と可測関数 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ボレル集合と同型写像 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: ボレル集合と実数直線 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: ボレル集合と完備距離空間 · 続きを見る »

完全加法族

数学における完全加法族(かんぜんかほうぞく、completely additive class)、可算加法族(かさんかほうぞく、countably additive class)あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、σ-algebra)、σ-集合体(シグマしゅうごうたい、σ-field)接頭辞 "σ" は「可算加法的」("completely additive") であることを示すのにしばしば用いられる。また、完全加法族では可算加法性と可算乗法性が補集合を取る操作を通じて同値になるので区別されないが、(乗法族における)積の可算性が δ- を用いることによって表される場合がある(δ-乗法族)。例えば、σ-集合環と δ-集合環など。''G''δ-集合と''F''σ-集合の項も参照。は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である。.

新しい!!: ボレル集合と完全加法族 · 続きを見る »

差集合

差集合(さしゅうごう、set difference)とは、ある集合の中から別の集合に属する要素を取り去って得られる集合のことである。特に、全体集合 を固定して、 からその部分集合 の要素を取り去って得られる集合を の補集合という。.

新しい!!: ボレル集合と差集合 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ボレル集合と位相空間 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: ボレル集合と圏 (数学) · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: ボレル集合と区間 (数学) · 続きを見る »

マハラムの定理

数学において、マハラムの定理(マハラムのていり、)は測度空間の分解可能性に関する深遠な結果で、バナッハ空間の理論において重要な役割を果たす。端的に言うと、すべての完備測度空間は、ある離散空間上の数え上げ測度を使うことで、(実数上の単位区間 の積の複製であるような)「非原子部(non-atomic part)」と「純原子部(purely atomic part)」に分解することが出来ると、この定理では述べられている。この定理はによる結果であり、によって局所化可能な測度空間にまで拡張された。 この結果は古典的なバナッハ空間の理論において重要となる。そのような理論において、ある一般の可測空間上の可測関数の ''L''''p'' 空間として与えられるバナッハ空間を考えるとき、その非原子部と原子部への分解に関して理解できれば十分となる。 マハラムの定理はまた、に関する用語で解釈し直すことも出来る。すべてのアーベルフォンノイマン環は、σ-有限アーベルフォンノイマン環の積と同型であり、すべての σ-有限アーベルフォンノイマン環は、離散アーベルフォンノイマン環、すなわち離散集合上の有界函数からなる環の空間テンソル積と同型である。 ポーランド空間に対する同様の定理はカジミェシュ・クラトフスキによって与えられた。その定理では、ボレル集合としての上述の概念は、実数、整数あるいは有限集合と同型であることが述べられている。.

新しい!!: ボレル集合とマハラムの定理 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: ボレル集合とハウスドルフ空間 · 続きを見る »

ポーランド空間

数学の位相空間論において、ポーランド空間とは、可分で完備距離づけ可能な位相空間のことである。すなわち、可算な稠密部分集合をもつ完備距離空間と同相な空間のことである。名前の由来は、この空間が著名なポーランド人研究者達(例えば、シェルピニスキ, クラトフスキ, タルスキ等)によって研究され始めたことによる。今日では、Borel equivalence relation等の研究を含んだ記述集合論の研究のための基礎としても重要視されている。 ポーランド空間の例としては、実数直線, 可分なバナッハ空間, カントール空間, ベール空間がある。さらに言えば、普通の距離づけでは完備でないがポーランド空間ではあるようなものも存在する。例えば開区間 (0, 1) はポーランド空間である。 いかなる二つの不可算なポーランド空間の間にも、ボレル同型写像が存在する。すなわち、全単射でボレル構造を保つものが存在する。特に、不可算なポーランド空間の濃度は必ず連続体濃度となる。.

新しい!!: ボレル集合とポーランド空間 · 続きを見る »

ポール・ハルモス

ポール・リチャード・ハルモス (Paul Richard Halmos, Halmos Pál, 1916年3月3日 – 2006年10月2日) はユダヤ系ハンガリー人として生れたアメリカの数学者である。数理論理学、確率論、統計学、作用素論、エルゴード理論、関数解析学(特にヒルベルト空間論)に基礎的な貢献をした。 また数学を見事に伝えることのできる数学者(great mathematical expositor)として広く認められている。.

新しい!!: ボレル集合とポール・ハルモス · 続きを見る »

ボレル測度

数学の、特に測度論の分野におけるボレル測度(ボレルそくど、)とは、次のように定義される測度のことである:X を局所コンパクトなハウスドルフ空間とし、\mathfrak(X) を X の開集合を含む最小のσ-代数とする。このような \mathfrak(X) はボレル集合のσ-代数と呼ばれる。ボレル測度とは、ボレル集合のσ-代数上で定義される任意の測度 μ のことを言う。ただし、人によっては、すべてのコンパクト集合 C に対する μ(C) \mathfrak(\textbf) は R の開区間を含む最小のσ-代数となる。そのようなボレル測度 μ は多く存在するが、すべての区間 に対して \mu().

新しい!!: ボレル集合とボレル測度 · 続きを見る »

ニコライ・ルージン

ニコライ・ニコラエヴィチ・ルージン(Никола́й Никола́евич Лу́зин、Nikolai Nikolaevich Luzin、1883年12月9日 - 1950年1月28日)は、ロシアの数学者。記述集合論における業績や点集合トポロジー(位相空間論)に密接に結びついた解析学の展開で知られる。Luzitaniaと呼ばれる1920年代前半の若い数学者による緩やかな学派は、彼の名に由来する。彼らは集合論的な志向を持ち、他の数学の分野への適用を進めた。.

新しい!!: ボレル集合とニコライ・ルージン · 続きを見る »

ベール集合

数学、特に測度論においてベール集合は測度論と位相空間論の関係の理解に重要な概念である。 とくに、ベール集合の理解は距離付不能な位相空間での測度の扱いに関する直観を助ける。 ベール集合はボレル集合のサブクラスである。逆も全てではないが多くの重要な位相空間で成り立つ。.

新しい!!: ボレル集合とベール集合 · 続きを見る »

和集合

数学において、集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、)、あるいは演算的に集合の和(わ、sum)、もしくは'''結び'''(むすび、)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである。.

新しい!!: ボレル集合と和集合 · 続きを見る »

アレキサンダー・ケクリス

アレキサンダー・ケクリス(Alexander S. Kechris)はギリシャの論理学者。カリフォルニア工科大学教授。1969年にアテネ国立工科大学電気機械工学科を卒業、1972年にカリフォルニア大学ロサンゼルス校で数学の博士号を取得。2003年にボレル同値に関する業績によってグレゴーリー・ヒョースとともに論理学において最高とされるキャロル・カープ賞を受賞。.

新しい!!: ボレル集合とアレキサンダー・ケクリス · 続きを見る »

エミール・ボレル

ミール・ボレル (Félix Édouard Justin Émile Borel, 1871年1月7日-1956年2月3日) は、フランスの数学者、政治家。ボレル測度などで知られ、アンリ・ルベーグとともに測度論の先駆者となった。また、ゲーム理論に関する論文もいくつか発表した。.

新しい!!: ボレル集合とエミール・ボレル · 続きを見る »

カジミェシュ・クラトフスキ

ミェシュ・クラトフスキ(Kazimierz Kuratowski, 1896年2月2日 - 1980年6月18日)はポーランドの数学者。.

新しい!!: ボレル集合とカジミェシュ・クラトフスキ · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: ボレル集合とコンパクト空間 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ボレル集合とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: ボレル集合と冪集合 · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: ボレル集合と共通部分 (数学) · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: ボレル集合と確率分布 · 続きを見る »

確率空間

率空間(かくりつくうかん、probability space)とは、可測空間 に確率測度 を入れた測度空間 を言う。アンドレイ・コルモゴロフによる確率論の公理的構成から、現代においては、確率論は確率空間における確率測度の理論として展開される。.

新しい!!: ボレル集合と確率空間 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: ボレル集合と確率論 · 続きを見る »

確率測度

率測度(かくりつそくど、probability measure)とは、'''可算加法性'''のような測度の性質を満たすものの内、確率空間において事象の集合上で定義された実数値函数のことである。確率測度とより一般的な測度(面積や体積のような概念)との違いは、確率測度は全空間に対しては 1 を返さねばならないことである。 A course in mathematics for students of physics, Volume 2 by Paul Bamberg, Shlomo Sternberg 1991 ISBN 0-521-40650-1 The concept of probability in statistical physics by Yair M. Guttmann 1999 ISBN 0-521-62128-3 In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity.

新しい!!: ボレル集合と確率測度 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: ボレル集合と約数 · 続きを見る »

病的な (数学)

数学における病的な(びょうてきな、; 病理学的な)事象とは、その性質が変則的に悪質であったり、直感に反すると見なされるようなもののことを言う。対義語には (well-behaved) というものがある。.

新しい!!: ボレル集合と病的な (数学) · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: ボレル集合と無理数 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: ボレル集合と違いを除いて · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: ボレル集合と順序数 · 続きを見る »

解析集合

記述集合論において、ポーランド空間 X の部分集合が 解析集合 であるとは、それがあるポーランド空間の連続像であることをいう。この概念を最初に定義したのはルジンとその指導下にあったススリンである。,.

新しい!!: ボレル集合と解析集合 · 続きを見る »

記述集合論

数理論理学において記述集合論(descriptive set theory)はよい振る舞いを持つポーランド空間(例えば数直線)の部分集合の研究である。集合論の主要な研究分野のひとつであるのと同様に、関数解析、エルゴード理論、作用素環、群作用、数理論理学など、他の分野への応用を持つ。.

新しい!!: ボレル集合と記述集合論 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: ボレル集合と距離函数 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: ボレル集合と距離空間 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: ボレル集合と閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: ボレル集合と開集合 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: ボレル集合と連分数 · 続きを見る »

Mizar

自動証明検証システム Mizar(ミザー、ミザール)は、まったく厳密に形式的な形で数学的な定義や証明を記述するためのデータ記述言語(Mizar-言語)、実際にその言語で記述された証明の内容を検証することができる計算機プログラム(証明検証プログラム)、プログラムから参照して新たな証明の際に利用可能な定義と証明済みの定理からなるライブラリ (MML) の三者から構成される。 Mizar と同様の目的を持つプロジェクトに、ロバート・ボイヤーのQEDプロジェクトがある。.

新しい!!: ボレル集合とMizar · 続きを見る »

極限順序数

集合論およびにおける極限順序数(きょくげんじゅんじょすう、limit ordinal)は でも後続順序数でもない順序数を言う。あるいは、順序数 が極限順序数であるための必要十分条件は「 より小さい順序数が存在して、順序数 が より小さい限り別の順序数 が存在して によって の形に書ける順序数。つまり、カントール標準形において末項としての有限な数を持たない非零順序数。.

新しい!!: ボレル集合と極限順序数 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: ボレル集合と測度論 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: ボレル集合と濃度 (数学) · 続きを見る »

最小の非可算順序数

最小の非可算順序数()ω1の存在は、選択公理によらずに示すことができる(ハルトークス数を参照)。ω1は極限順序数で、すべての可算な順序数を含む非可算集合である。ときに Ω とも表記される。その濃度は最小の非可算基数 ℵ1 に等しい。.

新しい!!: ボレル集合と最小の非可算順序数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ボレル集合と数学 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: ボレル集合と数学的帰納法 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: ボレル集合と整数 · 続きを見る »

ここにリダイレクトされます:

ボレルσ代数ボレル代数ボレル完全加法族ボレル加法族ボレル集合代数ボレル集合体ボレル集合族

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »