ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

カッツ・ムーディ代数

索引 カッツ・ムーディ代数

数学において、カッツ・ムーディ(・リー)代数(Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と は が類似の方法で導出できることを証明した。.

34 関係: 半単純リー代数半単純リー環のルート系単純リー群双対ベクトル空間実数対称行列対角行列一般カッツ・ムーディ代数マクドナルド恒等式ヤコビ恒等式リー代数リー代数の随伴表現リー代数の表現ルート系ヴィクトル・カッツディンキン図形ベクトル空間アフィンリー代数エリ・カルタンカルタン行列カルタン部分環クロード・シュヴァレージャン=ピエール・セール共形場理論理論物理学符号 (数学)線型独立生成 (数学)直和行列の定値性行列の階数複素数数学整数

半単純リー代数

数学においてリー代数が半単純であるとは単純リー代数(自分自身と0以外にイデアルを持たないような非可換リー代数)の直和となる事をいう。 この記事内では特に注意しない限り \mathfrak g を標数0の体上の有限次元リー代数とする。以下の条件は全て同値である。.

新しい!!: カッツ・ムーディ代数と半単純リー代数 · 続きを見る »

半単純リー環のルート系

数学において,被約抽象ルート系と半単純リー環の間には1対1の対応がある.ここで半単純リー環のルート系の構成,そして逆に,被約抽象ルート系からの半単純リー環の構成,が示される..

新しい!!: カッツ・ムーディ代数と半単純リー環のルート系 · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: カッツ・ムーディ代数と単純リー群 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: カッツ・ムーディ代数と双対ベクトル空間 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: カッツ・ムーディ代数と実数 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: カッツ・ムーディ代数と対称行列 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: カッツ・ムーディ代数と対角行列 · 続きを見る »

一般カッツ・ムーディ代数

数学において,一般カッツ・ムーディ代数(いっぱんカッツ・ムーディだいすう,generalized Kac–Moody algebra)はカッツ・ムーディ代数に類似のリー環であって,ただしを持ってもよい.一般カッツ・ムーディ代数は GKM 代数 (GKM algebra),ボーチャーズ・カッツ・ムーディ代数 (Borcherds–Kac–Moody algebra),BKM 代数 (BKM algebra),ボーチャーズ代数 (Borcherds algebra) と呼ばれることもある.最もよく知られた例はである..

新しい!!: カッツ・ムーディ代数と一般カッツ・ムーディ代数 · 続きを見る »

マクドナルド恒等式

数学において,マクドナルド恒等式(Macdonald identities)は,アフィンルート系に付随したある無限積の等式であり, によって導入された.特別な場合としてヤコビの三重積等式やワトソンの五重積等式, によって発見されたいくつかの等式や によって発見された10重積等式を含んでいる. と はマクドナルド恒等式がアフィンカッツ・ムーディ代数や超代数のの類似物であることを指摘した..

新しい!!: カッツ・ムーディ代数とマクドナルド恒等式 · 続きを見る »

ヤコビ恒等式

数学におけるヤコビ恒等式(Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。.

新しい!!: カッツ・ムーディ代数とヤコビ恒等式 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: カッツ・ムーディ代数とリー代数 · 続きを見る »

リー代数の随伴表現

リー代数の随伴表現(リーだいすうのずいはんひょうげん、adjoint representation of a Lie algebra)とは、リー代数 \mathfrak の交換子を用いて定義されるリー代数から \mathfrak(\mathfrak) への準同型写像のことをいう。.

新しい!!: カッツ・ムーディ代数とリー代数の随伴表現 · 続きを見る »

リー代数の表現

数学の一分野である表現論では、リー代数の表現(リーだいすうのひょうげん、representation of a Lie algebra)は、リー代数を行列の集合(ベクトル空間の準同型)として記述する方法である。この方法により、リーブラケットは交換子により与えられる。 考え方はリー群の表現の考え方と密接に関連する。大まかには、リー代数の表現は、リー群の表現の微分した形であり、一方、リー群の普遍被覆の表現は、リー代数の表現の積分した形である。 リー代数の表現の研究で、リー代数に付随する普遍包絡代数と呼ばれる特別な環は、決定的役割を果たす。この環の構成の普遍性は、リー代数の表現の圏が、この普遍包絡代数上の加群の圏と同じであることを言っている。.

新しい!!: カッツ・ムーディ代数とリー代数の表現 · 続きを見る »

ルート系

数学において,ルート系(root system,système de racines)とはある幾何学的な性質を満たすユークリッド空間のベクトルの配置である.これはリー群やリー環の理論において基本的な概念である.リー群(や代数群のような類似物)やリー環は20世紀の間に数学の多くの部分で重要になってきたから,ルート系の一見すると特別な性質に反してそれらは多くの分野に応用される.さらに,ディンキン図形によるルート系の分類体系は(のような)リー理論とあからさまなつながりの全くない数学の分野において現れる.最後に,ルート系はにおけるように,それ自身重要である..

新しい!!: カッツ・ムーディ代数とルート系 · 続きを見る »

ヴィクトル・カッツ

ヴィクトル・カッツ(Виктор Гершевич Кац, Victor Gershevich Kac, 1943年12月19日 - )は、ソビエト連邦生まれの数学者である。 表現論に貢献し、カッツ・ムーディ代数を定義した。.

新しい!!: カッツ・ムーディ代数とヴィクトル・カッツ · 続きを見る »

ディンキン図形

という数学の分野において、ディンキン図形(ディンキンずけい、Dynkin diagram)とは、二重あるいは三重の辺(二重あるいは三重の線で描かれる)を持ち得るの一種であり、 にちなんで名づけられた。多重辺は制約条件により有向である。 ディンキン図形は代数閉体上の半単純リー環を分類する手段として主に興味を持たれている。これはワイル群を生じる、すなわち(すべてではないが)多くのを生じる。ディンキン図形は他の文脈においても現れる。 「ディンキン図形」という用語には曖昧さがある。ある場合にはディンキン図形は有向であると仮定され、この場合それらはルート系や半単純リー環に対応するが、他の場合には有向でないと仮定され、この場合ワイル群に対応する;有向図形, は同じ無向図形を生じ、これは と呼ばれる。この記事では、「ディンキン図形」は「向き付けられた」ディンキン図形を意味し、「向き付けられていない」ディンキン図形は明示的にそう呼ぶ。 Image:Finite Dynkin diagrams.svg|有限ディンキン図形 Image:Affine Dynkin diagrams.png|アファイン(拡大)ディンキン図形.

新しい!!: カッツ・ムーディ代数とディンキン図形 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: カッツ・ムーディ代数とベクトル空間 · 続きを見る »

アフィンリー代数

数学において、アフィン・リー環(affine Lie algebra)は、有限次元単純リー環から自然な方法で構成される無限次元のリー環である。アフィン・リー環は一般カルタン行列が半正定値で余階数が 1 のカッツ・ムーディ・リー環である。純粋数学的な視点からは、アフィン・リー環は面白い理由は、その表現論が、有限次元半単純リー環の表現論のように、一般のカッツ・ムーディ・リー環の表現論よりもはるかによく理解されているからである。ヴィクトル・カッツによって発見されたように、アフィン・リー環の表現に対する指標公式から、組合せ論的な恒等式であるマクドナルド恒等式が導かれる。 アフィンリー環はそのつくり方により弦理論や共形場理論において重要な役割を果たす。つくり方は、単純リー環 \mathfrak からはじめて、円(閉弦と解釈される)上の \mathfrak 値関数からなる点ごとの交換子によるループ代数 L\mathfrak を考える。アフィンリー環 \hat はループ代数に1次元付け加えて交換子を非自明な方法で修正することによって得られる。これは物理学者が量子アノマリー(この場合WZWモデルのアノマリー)と、数学者が中心拡大と呼ぶものである。より一般に、 が単純Lie環 \mathfrak のディンキン図形の自己同型に伴う自己同型であるとき、twisted loop algebra L_\sigma\mathfrak は実数直線上の \mathfrak 値関数 で twisted periodicity condition を満たすものからなる。その中心拡大がまさに twisted アフィンリー環である。弦理論の視点はアフィンリー環の多くの深い性質、例えばそれらの表現のはモジュラー群の下でそれらの中で変換すること、を理解する助けとなる。.

新しい!!: カッツ・ムーディ代数とアフィンリー代数 · 続きを見る »

エリ・カルタン

エリ・カルタン(Élie Joseph Cartan, 1869年4月9日 - 1951年5月6日)はフランスの数学者。リー群、微分幾何学に大きな業績を残した。数学界の巨人のひとり。 イゼール県ドロミューで、父親は鍛冶屋、母は絹織物工で、幼時より非凡な才能を示し、記憶力は抜群であった。 高等師範学校にすすみ、碩学エミール・ピカールなどの講義をうける。ソルボンヌ大学も通い、グルサやエルミートの講義などに感激した。 25歳の時に出した学位論文「有限次元連続変換群の構造について」は学者としての地位を約束するものであった。この論文によりみとめられ、1894年、モンペリエ大学の講師に任命される。 その後、40歳でパリ大学の講師に任命される。研究は多岐におよび、対称空間の発見、接続の概念の提唱など基本的な重要な仕事をした。リー群論、スピノル理論、連続群論、微分幾何学、積分不変式など。 子供は4人、3男1女、長男アンリは関数論の専門家、次男ジャンは作曲家だが夭逝、三男ルイは物理学者、長女のエレーヌは数学教師とのことである。 690409 -690409 Category:フランスの数学者 Category:微分幾何学者 Category:王立協会外国人会員 Category:フランス科学アカデミー会員 Category:モンペリエ大学の教員 Category:イゼール県出身の人物 Category:数学に関する記事 Category:1869年生 Category:1951年没.

新しい!!: カッツ・ムーディ代数とエリ・カルタン · 続きを見る »

カルタン行列

ルタン行列(Cartan matrix)は 3つの意味を持っている。3つともすべてはフランスの数学者エリ・カルタン(Élie Cartan)の名に因んでいる。実際、リー代数の脈絡でのカルタン行列は、最初に(Wilhelm Killing)により研究され、一方、キリング形式はカルタンによって研究された。.

新しい!!: カッツ・ムーディ代数とカルタン行列 · 続きを見る »

カルタン部分環

数学において,カルタン部分環(カルタンぶぶんかん,Cartan subalgebra,しばしば CSA と略される)とは,リー環 \mathfrak の冪零部分環 \mathfrak であって,なもの(すべての X \in \mathfrak に対して \in \mathfrak であるならば,Y \in \mathfrak であるもの)のことである.エリ・カルタンによって彼の博士論文において導入された..

新しい!!: カッツ・ムーディ代数とカルタン部分環 · 続きを見る »

クロード・シュヴァレー

ード・シュヴァレー クロード・シュヴァレー(Claude Chevalley, 1909年2月11日 - 1984年6月28日)は、フランスの数学者、哲学者。ブルバキのメンバーの一人。.

新しい!!: カッツ・ムーディ代数とクロード・シュヴァレー · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: カッツ・ムーディ代数とジャン=ピエール・セール · 続きを見る »

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。 共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。 共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。.

新しい!!: カッツ・ムーディ代数と共形場理論 · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: カッツ・ムーディ代数と理論物理学 · 続きを見る »

符号 (数学)

数学における符号(ふごう、sign)は、任意の非零実数は正または負であるという性質に始まる。ふつうは0自身は符号を持たないが、ときにが意味を為す文脈もあり、また「 の符号は である」とすることが有効な場合もある。実数の符号の場合を敷衍して、数学や物理学などで「符号の変更」("change of sign") あるいは「符号反転」(negation) が、反数を対応付ける、あるいは−1-倍する操作として、実数以外の量に(それが正負零に分かれると限らないものでさえ)も用いられる。また、数学的対象が持つ正負の二項対立とよく似た側面、例えば置換の偶奇性などに対しても「符号」という言葉が用いられる。.

新しい!!: カッツ・ムーディ代数と符号 (数学) · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

新しい!!: カッツ・ムーディ代数と線型独立 · 続きを見る »

生成 (数学)

数学における生成(せいせい、generate)とは、与えられた対象と条件に対して、その条件を満たしかつ与えられた対象を全て含むような最小の構成物を求めることである。このとき与えられた対象の集まりを生成系(生成集合)(generating set) といい、生成集合の各元を生成元 (generator) という。また、「最小の構成物」は生成系から生成されるという。生成系が1つの対象からなるような場合には、生成系と生成元は同一視できる。.

新しい!!: カッツ・ムーディ代数と生成 (数学) · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: カッツ・ムーディ代数と直和 · 続きを見る »

行列の定値性

線型代数学における行列の定値性(ていちせい、definiteness)は、その行列に付随する二次形式が一定の符号を持つか否か (二次形式の定値性) と密接な関係を持つ概念だが、付随する二次形式を経ることなくその行列自身の持つ性質によって特徴づけることもできる。 この概念は対称行列およびエルミート行列に対して定義するのが通例であるが、そうではない行列を含むように「定値性」の概念を一般化して適用する文献もある。.

新しい!!: カッツ・ムーディ代数と行列の定値性 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: カッツ・ムーディ代数と行列の階数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: カッツ・ムーディ代数と複素数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: カッツ・ムーディ代数と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: カッツ・ムーディ代数と整数 · 続きを見る »

ここにリダイレクトされます:

カッツ–ムーディ代数カッツ・ムーディリー代数カッツ・ムーディリー環カッツ・ムーディ・リー代数カッツ・ムーディ・リー環カッツ・ムーディーリー代数カッツ・ムーディーリー環カッツ・ムーディー・リー代数カッツ・ムーディー・リー環カッツ・ムーディー代数カッツ=ムーディリー代数カッツ=ムーディリー環カッツ=ムーディ・リー代数カッツ=ムーディ・リー環カッツ=ムーディーリー代数カッツ=ムーディーリー環カッツ=ムーディー・リー代数カッツ=ムーディー・リー環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »