ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

直和

索引 直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

31 関係: 加群の圏単射双対境界 (位相空間論)代数のテンソル積代数的構造位相空間余積圏論ベクトル空間和集合アーベル群アーベル群の圏内部 (位相空間論)共通部分 (数学)積 (圏論)空集合群の圏環の圏環上の加群点ごと直積直積集合選択公理非交和自由積自然変換集合の圏族 (数学)数学普遍性

加群の圏

数学の一分野である圏論において加群の圏(かぐんのけん、category of modules)Mod は、すべての加群を対象としすべての加群準同型を射とする圏である。.

新しい!!: 直和と加群の圏 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 直和と単射 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: 直和と双対 · 続きを見る »

境界 (位相空間論)

一般位相において位相空間 X の部分集合 S の境界(きょうかい、boundary, frontier)とは、S の中からも外からも近づくことのできる点の全体の成す X の部分集合のことである。もうすこし形式的に言えば、S の触点(閉包に属する点)のうち、S の内点(開核に属する点)ではないものの全体の成す集合のことである。S の境界に属する点のことを、S の境界点(boundary point) と呼ぶ。S が境界を持たない (boundaryless) とは、S が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも S に属さないことをいう。集合 S の境界を表すのに、bd(S), fr(S), ∂S最初のふたつはそれぞれ boundary, frontier の省略形からきている(が、省略の仕方は変えてもいいし省略しなくてもいい)。これ以外の記法としては、松坂では frontier の頭文字を右肩に載せる Sf を用いている。内部 (interior).

新しい!!: 直和と境界 (位相空間論) · 続きを見る »

代数のテンソル積

数学において、二つの R-代数(多元環)のテンソル積には再び -代数の構造を入れることができ、代数のテンソル積 (tensor product of algebras) あるいはテンソル積多元環と呼ばれる対象が得られる。任意の環は -代数と見ることができるから、 と取った特別の場合として環のテンソル積 (tensor product of rings) が定まる。.

新しい!!: 直和と代数のテンソル積 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 直和と代数的構造 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 直和と位相空間 · 続きを見る »

余積

圏論において、余積(よせき、双対積、双対直積、coproduct)あるいは圏論的和(わ、直和、sum, direct sum)は、集合の直和、位相空間の直和、群の自由積、加群やベクトル空間の直和などを例として含む圏論的構成である。対象の族の余積は本質的に、族の各対象がそこへの射をもつような「最も固有的でない (least specific)」対象である。それは圏論的(直)積の圏論的双対概念であり、これは定義がすべての矢印を逆にすることを除けば積と同じであることを意味する。名前と表記の一見無害な変化にも関わらず、余積は積と劇的に異なり得るし、典型的にはそうなる。.

新しい!!: 直和と余積 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 直和と圏論 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 直和とベクトル空間 · 続きを見る »

和集合

数学において、集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、)、あるいは演算的に集合の和(わ、sum)、もしくは'''結び'''(むすび、)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである。.

新しい!!: 直和と和集合 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 直和とアーベル群 · 続きを見る »

アーベル群の圏

数学の一分野である圏論におけるアーベル群の圏(あーべるぐんのけん、category of abelian groups) は、アーベル群を対象とし群準同型を射とする圏である。アーベル群の圏はアーベル圏の原型であり、実際に任意の小さいアーベル圏は に埋め込める。.

新しい!!: 直和とアーベル群の圏 · 続きを見る »

内部 (位相空間論)

数学において集合 S の内部(ないぶ、interior)あるいは開核(かいかく、open kernel)は、直観的には S の「縁にある点を除く」 S の点全てからなる。S の内部に属する点は S の内点(ないてん、interior point)であるという。 また、集合の外部(がいぶ、exterior)は、その集合の補集合の内部をいい、その集合にもその集合の境界にも含まれない点の全体からなる。 集合の内部という概念は位相的概念であって、任意の集合に対して定義されるものではないが、その集合がある位相空間の部分集合となっているならば定義される。内部はさまざまな意味で閉包の概念の双対概念であり、とくに圏論的な意味での双対になっている。.

新しい!!: 直和と内部 (位相空間論) · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: 直和と共通部分 (数学) · 続きを見る »

積 (圏論)

圏論において、考えている圏の二つの(あるいはそれ以上の)対象の(圏論的)積(せき、product)または直積 (direct product) は集合の直積(デカルト積)、群の直積、環の直積、位相空間の直積といった数学の他の分野における構成の背後にある本質を捉えるために考えられた概念である。本質的に対象の族の積は与えられた対象のそれぞれへの射をもつ「最も一般な」対象である。.

新しい!!: 直和と積 (圏論) · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 直和と空集合 · 続きを見る »

群の圏

数学の一分野である圏論における群の圏(ぐんのけん、category of groups) は、群すべてからなる類を対象の類とし、群準同型を射とする圏である。作り方からこれはを成す。代数学における群論は、この圏の研究であるとみなすこともできる。.

新しい!!: 直和と群の圏 · 続きを見る »

環の圏

数学の特に圏論における(単位的・結合)環の圏(かんのけん、category of rings) は、すべての(単位元持つ)環を対象とし、すべての(単位元を保つ)環準同型を射とする圏である。他の多くの例と同じく、環の圏は大きい(すなわち、すべての環の成す類は集合でない真の類である)。.

新しい!!: 直和と環の圏 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 直和と環上の加群 · 続きを見る »

点ごと

数学において,点ごとということばは,ある性質がある関数 の各値 を考えることによって定義されることを指し示すために用いられる.点ごとの概念の重要なクラスは点ごとの演算である,つまり,関数に演算を関数の値に定義域の各点に対して別々に適用することによって定義される演算である.重要なもまた点ごとに定義できる..

新しい!!: 直和と点ごと · 続きを見る »

直積

数学において、直積を考えられる対象は様々ある。そのうちの一部を以下に挙げる。.

新しい!!: 直和と直積 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 直和と直積集合 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: 直和と選択公理 · 続きを見る »

非交和

集合論において、集合の族の直和 (direct sum) は、以下の緊密に関連した二種類の概念を指して用いられる。.

新しい!!: 直和と非交和 · 続きを見る »

自由積

数学、とくに群論における自由積(じゆうせき、free product)は、2つの群 G, H から新しい群 G ∗ H を構成する操作である。G ∗ H は G と H をともに部分群として含み、G と H の元によって生成され、そして、これらの性質を持つ「最も一般的な」群である。G と H の一方が自明でないかぎり、自由積は必ず無限群である。自由積の構成は自由群(与えられた生成集合から作ることのできる最も一般的な群)の構成と類似している。 自由積は群の圏における余積である。つまり、自由積が群論において果たす役割は、集合論における非交和や加群論における直和のそれと同じである。もとの群が可換であったとしても、一方が自明でない限り、自由積は可換ではない。したがって、自由積はアーベル群の圏における余積ではない。 自由積はのために代数トポロジーにおいて重要である。この定理はある条件を満たす2つの弧状連結位相空間の和集合の基本群は常にもとの空間の基本群の融合積であるというものである。とくに2つの空間のウェッジ和(すなわち1点で2つの空間を貼りあわせて得られる空間)の基本群は単に空間の基本群の自由積である。 自由積はまた木に自己同型として作用する群の研究であるにおいても重要である。特に、木に対する有限頂点固定群を持つ任意の群作用は融合積とを用いて有限群から構成することができる。この理論において、双曲平面のある種の三角形分割上へのモジュラー群の作用を用いれば、モジュラー群が位数 および の巡回群の、位数 の巡回群上でとった融合積に同型となることが示せる。 群の自由積(=余積)はの圏において考えるのが適している 。群の非交和は、群にはならないが、亜群にはなるという点に注目する。任意の亜群 は必ず普遍群 (universal group) を持つが、群の非交和の普遍群はそれら群の自由積(=余積)に一致するのである。.

新しい!!: 直和と自由積 · 続きを見る »

自然変換

数学の一分野である圏論において、自然変換(しぜんへんかん、natural transformation)は、ある函手をその圏に関する内部構造(即ち射の合成)を保ちながら別の函手に変形する方法を与えるものである。したがって直観的には、自然変換というのは「函手間の射」のことであると考えうる。このことは実際に、函手圏と呼ばれるものを定義することにより厳密に定式化することができる。圏論において自然変換の概念は、圏と函手に次いで最も基本的な概念であり、それ故に圏論を用いる議論の大部分に現れる。.

新しい!!: 直和と自然変換 · 続きを見る »

集合の圏

数学の一分野である圏論において、集合の圏(しゅうごうのけん、category of sets)Set (あるいは \mathcal などとも書く) は、その対象の成す類が集合全体の成す類であるような圏である。ただし、対象の間の射の類は、集合 に対して を任意の写像とするとき、 の形に書ける三つ組全体の成す集合によって与えられる。.

新しい!!: 直和と集合の圏 · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: 直和と族 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 直和と数学 · 続きを見る »

普遍性

数学の様々な分野において、ある特定の状況下にて一意に射を定めるような抽象的性質が、特定の構成を定義、あるいは特徴づけたりする事がしばしばある。このような性質を普遍性(universal property)と呼ぶ。普遍性は圏論を用いて抽象的に論考される。 結果として、我々は普遍性の一般的な扱い方を得ることになる。例えば、群の直積や直和、自由群、積位相, ストーン-チェックのコンパクト化, テンソル積, 逆極限 と 順極限, 核と余核, 引き戻し, 押し出し および イコライザ、など。.

新しい!!: 直和と普遍性 · 続きを見る »

ここにリダイレクトされます:

直和集合

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »