ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

プランクの法則

索引 プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

90 関係: ArXiv原子同種粒子多重対数関数室温位相空間 (物理学)化学ポテンシャルノルムマックス・プランクネイピア数ポール・エーレンフェストメートルメートル毎秒モードレイリー・ジーンズの法則ヴィルヘルム・ヴィーンヴィーンの放射法則ボルツマン定数ボルツマン分布ボーアの原子模型ボース分布関数ボース粒子ヘルツプランク定数ツァイトシュリフト・フュア・フィジークドイツドイツ物理学会ドイツ語分配関数アナーレン・デア・フィジークアルベルト・アインシュタインアインシュタイン係数ウィーンの変位則エネルギーエネルギー密度エネルギー等配分の法則エルグカシミール効果キルヒホッフの法則 (放射エネルギー)グスタフ・キルヒホフケルビンシュテファン=ボルツマンの法則ジュールジョン・ウィリアム・ストラット (第3代レイリー男爵)ジェームズ・ジーンズスペクトル密度スピン角運動量サティエンドラ・ボース光子光電効果...光速国際単位系CGS単位系状態密度状態量理想気体立体角箱の中の気体粒子統計紫外線縮退統計力学無次元量熱力学的平衡物理学遷移表面詳細釣り合い誘導放出黒体赤外線量の次元量子力学量子化量子化 (物理学)量子論自然放出英語電磁波逆温度Portable Document Format波長温度指数関数的減衰放射輝度放射束整数時間1900年2状態系 インデックスを展開 (40 もっと) »

ArXiv

arXiv(アーカイヴ、archiveと同じ発音)は、物理学、数学、計算機科学、量的生物学、計量ファイナンス、統計学の、を含む様々な論文が保存・公開されているウェブサイトである。論文のアップロード(投稿)、ダウンロード(閲覧)ともに無料で、論文はPDF形式である。1991年にスタートして、プレプリント・サーバーの先駆けとなったウェブサイトである。大文字の X をギリシャ文字のカイ(Χ)にかけて archive と読ませている。 現代(2012年)においてはこうした仕組みのサイトは特に珍しいものでもない。しかし、arXivの設立当初(1990年代初頭)においては、学術出版社や大学図書館を介さずに研究者同士がインターネットを介して直接に論文をやりとりできる場として、学術出版関係者に大きな驚きをもって受けとめられた。 2015年8月現在106万報以上の論文が保存されている。毎月8,000報を超える論文が追加されている。1991年、LANL preprint archiveという名称でロスアラモス国立研究所を運営元としてスタートし、1999年にarXiv.orgと改名。現在はコーネル大学図書館が運営元となっている。.

新しい!!: プランクの法則とArXiv · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: プランクの法則と原子 · 続きを見る »

同種粒子

同種粒子(Identical particles)は原理的に区別することができない粒子のことである。同種粒子に含まれるものとして、電子などの素粒子や、原子や分子などの複合粒子がある。 量子論では複数の同種粒子を含む系の状態ベクトルや物理量(オブザーバブル)は一定の対称性を持つものに限られる。その対称性は、基本変数を粒子の「位置と運動量」にとった量子論(量子力学)では少し不自然にも見える形で現れる(波動関数の対称性、反対称性など)。この不自然さは、個々の粒子に別々の「位置と運動量」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。そこで基本変数を「場」とその共役運動量にとれば、同種粒子の区別がつかないことや、状態ベクトルや物理量の対称性なども自動的に理論に組み込まれ、すっきりしたものになる。 同種粒子はボゾンとフェルミオンに大別できる。ボゾンは量子状態を共有でき、フェルミオンはパウリの排他原理のため量子状態を共有できない。ボゾンの例として、フォトン、グルーオン、フォノン、4He原子がある。フェルミオンの例として、電子、ニュートリノ、クォーク、プロトン、中性子、3He原子がある。 粒子が区別できないという事実は統計力学に重要な影響を与える。統計力学の計算では確率が大きく関係しており、確率は考えている対象が区別できるかどうかで決定的な違いが現れる。その結果、同種粒子は区別できる粒子とは大きく異なる統計的振る舞いを示す。その例がギブズのパラドックスである。.

新しい!!: プランクの法則と同種粒子 · 続きを見る »

多重対数関数

解析学における多重対数関数 (たじゅうたいすうかんすう)またはポリ対数関数 (英:Polylogarithm、略称ポリログ)もしくは de Jonquiereの関数 とは特殊関数の一つで、通常 \operatorname_s(z) と書かれ、以下のように定義される: \operatorname_s(z).

新しい!!: プランクの法則と多重対数関数 · 続きを見る »

室温

室温(しつおん)とは、部屋など屋内の温度のことである。 ただし以下に述べるように、自然科学の用語として用いられる場合があり、その場合は領域ごとに若干定義が異なる。常温も参照のこと。 英語では室温をroom temperatureいう事から「RT」または「rt」と略記されることがある。.

新しい!!: プランクの法則と室温 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: プランクの法則と位相空間 (物理学) · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

新しい!!: プランクの法則と化学ポテンシャル · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: プランクの法則とノルム · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: プランクの法則とマックス・プランク · 続きを見る »

ネイピア数

1.

新しい!!: プランクの法則とネイピア数 · 続きを見る »

ポール・エーレンフェスト

ポール・エーレンフェスト(パウル・エーレンフェスト)(Paul Ehrenfest、1880年1月18日 - 1933年9月25日)はオーストリア出身のオランダの物理学者。数学者。.

新しい!!: プランクの法則とポール・エーレンフェスト · 続きを見る »

メートル

メートル(mètre、metre念のためであるが、ここでの「英」は英語(English language)による綴りを表しており、英国における綴りという意味ではない。詳細は「英語表記」の項及びノートの「英語での綴り」を参照。、記号: m)は、国際単位系 (SI) およびMKS単位系における長さの物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである。なお、CGS単位系ではセンチメートル (cm) が基本単位となる。 元々は、地球の赤道と北極点の間の海抜ゼロにおける子午線弧長を 倍した長さを意図し、計量学の技術発展を反映して何度か更新された。1983年(昭和58年)に基準が見直され、現在は1秒の 分の1の時間に光が真空中を伝わる距離として定義されている。.

新しい!!: プランクの法則とメートル · 続きを見る »

メートル毎秒

メートル毎秒(メートルまいびょう、記号m/s)は、国際単位系(SI)における速さ又は速度の単位である国際単位系では、「速さ」、「速度」の単位としているが、日本の計量法では、「速さ」の単位としており、「速度」の単位とはしていない。。1メートル毎秒は、「1秒間に1メートルの速さ」と定義される。なお、速さと速度の違いについては、速度#速度と速さを参照のこと。 単位記号は、m/s である。m/sec としてはならない。 日常会話では「秒速何メートル」とも表現する。また、風速は日本では通常メートル毎秒で測るが、「毎秒」を省略して「風速何メートル」と表現することが多い。 1メートル毎秒は、以下に等しい。.

新しい!!: プランクの法則とメートル毎秒 · 続きを見る »

モード

モード.

新しい!!: プランクの法則とモード · 続きを見る »

レイリー・ジーンズの法則

レイリー・ジーンズの法則(レイリー・ジーンズのほうそく、Rayleigh–Jeans Law)は、黒体から放射される電磁波のエネルギー密度の理論式の1つである。 黒体から放射される電磁波のうち、波長が λ から λ+dλの間にある電磁波のエネルギー密度を f(&lambda)dλ とすると、レイリー・ジーンズの法則は、 と表される。ここで、T は熱力学温度、k は ボルツマン定数である。 この式は、.

新しい!!: プランクの法則とレイリー・ジーンズの法則 · 続きを見る »

ヴィルヘルム・ヴィーン

ヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン(独: Wilhelm Carl Werner Otto Fritz Franz Wien、1864年1月13日 - 1928年8月30日)は、ドイツの物理学者。英語風にウィルヘルム・ウィーンと表記されることもある。熱力学、特に黒体放射に関する研究で知られる。ヴィーンが発見したヴィーンの変位則やヴィーンの放射法則はマックス・プランクの量子論に直接結びつくもので、後にマックス・フォン・ラウエをして「ヴィーンの不滅の栄光は我々を量子力学の玄関口に導いた」と言わしめた。 1911年、「熱放射の諸法則に関する発見」によりノーベル物理学賞を受賞した。.

新しい!!: プランクの法則とヴィルヘルム・ヴィーン · 続きを見る »

ヴィーンの放射法則

ヴィーンの放射法則(ヴィーンのほうしゃほうそく、)、あるいはヴィーンの公式、ヴィーンの分布式とは、熱輻射により黒体から放出される電磁波のスペクトルを与える理論式である。 この法則は1896年にヴィルヘルム・ヴィーンによって導かれたMehra and Rechenberg "The Historical Development of Quantum Theory"Bowley and Sánchez "Introductory Statistical Mechanics"。短波長(高周波数)領域における近似式であり、ヴィーン近似とも呼ばれる。 長波長(低周波数)領域では実験とずれが生じて記述できないが、全ての波長領域で正しく記述されるようにプランクの法則の形に修正された。英語の発音に基づくウィーンのカナ表記、呼称も用いられる。.

新しい!!: プランクの法則とヴィーンの放射法則 · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: プランクの法則とボルツマン定数 · 続きを見る »

ボルツマン分布

ボルツマン分布(ボルツマンぶんぷ、)は、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式の一つである。ギブス分布とも呼ばれる。気体分子の速度の分布を与えるマクスウェル分布をより一般化したものに相当する。 量子統計力学においては、占有数の分布がフェルミ分布に従うフェルミ粒子と、ボース分布に従うボース粒子の二種類の粒子に大別できる。ボルツマン分布はこの二種類の粒子の違いが現れないような条件におけるフェルミ分布とボーズ分布の近似形(古典近似)である。ボルツマン分布に従う粒子は古典的粒子とも呼ばれる。 核磁気共鳴および電子スピン共鳴などにおいても、磁場の中で分裂した2つの準位の占有率はボルツマン分布に従う。.

新しい!!: プランクの法則とボルツマン分布 · 続きを見る »

ボーアの原子模型

ボーアの原子模型(ボーアのげんしもけい、Bohr's model)とは、ラザフォードの原子模型長岡半太郎の原子模型を発展させたものであるといわれる。のもつ物理学的矛盾を解消するために考案された原子模型である。この模型は、水素原子に関する実験結果を見事に説明し、量子力学の先駆け(前期量子論)となった。.

新しい!!: プランクの法則とボーアの原子模型 · 続きを見る »

ボース分布関数

ボース分布関数()は、相互作用のないボース粒子の系において、一つのエネルギー準位に入る粒子の数(占有数)を与える理論式である。ボース–アインシュタイン分布関数 とも呼ばれる。 エネルギーが に等しい準位の占有数を与えるボース分布関数は で表される。パラメータ は逆温度で、熱力学温度 と で関係付けられる。 は系の化学ポテンシャルである。 である。 となるのは生成および消滅が起こる光子やフォノンなどの粒子系か、ボース–アインシュタイン凝縮を起こしている粒子系である。 量子数 で指定される準位のエネルギーを とすれば、このエネルギー準位の占有数 の統計的期待値は で与えられる。.

新しい!!: プランクの法則とボース分布関数 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: プランクの法則とボース粒子 · 続きを見る »

ヘルツ

ヘルツ(hertz、記号:Hz)は、国際単位系 (SI) における周波数・振動数の単位である。その名前は、ドイツの物理学者で、電磁気学の分野で重要な貢献をしたハインリヒ・ヘルツに因む。.

新しい!!: プランクの法則とヘルツ · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: プランクの法則とプランク定数 · 続きを見る »

ツァイトシュリフト・フュア・フィジーク

『ツァイトシュリフト・フュア・フィジーク』(Zeitschrift für Physik)は、1997年までドイツ物理学会によりシュプリンガー・フェアラークから出版されていた物理学の学術雑誌。1920年創刊。20世紀の初めには物理学で最も権威ある雑誌の一つであり、その黄金時代は量子力学の黄金時代と重なっていた。.

新しい!!: プランクの法則とツァイトシュリフト・フュア・フィジーク · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: プランクの法則とドイツ · 続きを見る »

ドイツ物理学会

ドイツ物理学会(ドイツぶつりがっかい、英語:Deutsche Physikalische Gesellschaft、略称:DPG)は、2012年現在62,000人の会員を有する、世界最大で長い歴史をもつドイツの物理学会である。1845年1月14日にハインリヒ・グスタフ・マグヌスらによってベルリン物理学会として創立された。創立メンバーにはエミル・デュ・ボア=レイモンやエルンスト・ブリュッケがいた。1899年にドイツ物理学会の名になった。東西ドイツ分裂によって、2つに分かれたが、1990年に統一された。 は、量子力学にて波動関数の記号によく使われるΦ(ファイ)の字に似ていると思われるが、小文字のdとpを組み合わせたものと考えるのが妥当である。.

新しい!!: プランクの法則とドイツ物理学会 · 続きを見る »

ドイツ語

ドイツ語(ドイツご、独:Deutsch、deutsche Sprache)は、インド・ヨーロッパ語族・ゲルマン語派の西ゲルマン語群に属する言語である。 話者人口は約1億3000万人、そのうち約1億人が第一言語としている。漢字では独逸語と書き、一般に独語あるいは独と略す。ISO 639による言語コードは2字が de、3字が deu である。 現在インターネットの使用人口の全体の約3パーセントがドイツ語であり、英語、中国語、スペイン語、日本語、ポルトガル語に次ぐ第6の言語である。ウェブページ数においては全サイトのうち約6パーセントがドイツ語のページであり、英語に次ぐ第2の言語である。EU圏内では、母語人口は域内最大(ヨーロッパ全土ではロシア語に次いで多い)であり、話者人口は、英語に次いで2番目に多い。 しかし、歴史的にドイツ、オーストリアの拡張政策が主に欧州本土内で行われたこともあり、英語、フランス語、スペイン語のように世界語化はしておらず、基本的に同一民族による母語地域と、これに隣接した旧支配民族の使用地域がほとんどを占めている。上記の事情と、両国の大幅な領土縮小も影響して、欧州では非常に多くの国で母語使用されているのも特徴である。.

新しい!!: プランクの法則とドイツ語 · 続きを見る »

分配関数

統計力学において、分配関数(ぶんぱいかんすう、Partition function)または状態和(じょうたいわ、state sum, sum over states)は、ある系の物理量の統計集団的平均を計算する際に用いられる規格化定数を指す。単に分配関数と呼ぶときはカノニカル分布における分配関数を指し、ドイツ語で状態和を表す語Zustandssummeに由来する記号Zで表すW.

新しい!!: プランクの法則と分配関数 · 続きを見る »

アナーレン・デア・フィジーク

アナーレン・デア・フィジーク (Annalen der Physik) は世界で最も古い物理学の学術雑誌の一つ(1799年創刊)。物理学に関する幅広い分野の査読済み原著論文を掲載している。 この雑誌は1790年から1794年まで発行されたJournal der Physikと、1795年から1797年まで発行されたNeues Journal der Physikの後継雑誌であるhttp://www.physik.uni-augsburg.de/annalen/history/history.html 。創刊以後、何度か名前を変えて出版されてきた。.

新しい!!: プランクの法則とアナーレン・デア・フィジーク · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: プランクの法則とアルベルト・アインシュタイン · 続きを見る »

アインシュタイン係数

アインシュタイン係数(Einstein coefficients)とは、アインシュタインが導出した発光と吸光に関する遷移確率のこと。 自然放出の遷移確率をアインシュタインのA係数と呼び、吸光または誘導放出の遷移確率をアインシュタインのB係数と呼ぶ。 Category:量子力学 Category:量子光学 Category:エポニム.

新しい!!: プランクの法則とアインシュタイン係数 · 続きを見る »

ウィーンの変位則

各温度における黒体輻射のエネルギー密度の波長ごとのスペクトル ヴィーンの変位則(ウィーンのへんいそく、Wien's displacement law)とは、黒体からの輻射のピークの波長が温度に反比例するという法則である。ヴィルヘルム・ヴィーンによって発見された。ヴィーンはドイツの物理学者であるため「ヴィーン」が正しい名称となるが、慣習的に英語読みのウィーンの変位則とよばれることも多い。 ここで は黒体の温度(K)、 はピーク波長(m)、 は比例定数でありその値は である。CGS単位系では は約 0.29 cm·K である。.

新しい!!: プランクの法則とウィーンの変位則 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: プランクの法則とエネルギー · 続きを見る »

エネルギー密度

ネルギー密度(エネルギーみつど、energy density)は、系や空間に保存された単位体積あたりのエネルギーの量で、主に を使って表される。静止質量による静止エネルギーのような利用できないエネルギーを除いた有用な或いは抽出可能なエネルギーで測定される。宇宙論や一般相対論などでは、エネルギー密度はエネルギー・運動量テンソルに対応すると考えられている。エネルギー密度は圧力と同じ次元を持っており、圧力は系における単位体積あたりのエンタルピーを測定したものであるとも言える。.

新しい!!: プランクの法則とエネルギー密度 · 続きを見る »

エネルギー等配分の法則

ネルギー等配分の法則(law of equipartition of energy、エネルギー等配分則、エネルギー等分配則などとも言う)は、系の持つ自由度ごとに一定量のエネルギーが配分されるという統計力学の法則。 古典力学、古典統計が成り立つ理想的な系を考える。この系全体のエネルギーの式(ハミルトニアン)を H とする。相空間の座標のある1つの成分(一般化座標または一般化運動量) ξj について、H の項のうち ξj が関係する部分 εj が次のように表せるとする。 ここで、αj は適当な正の定数である。熱平衡状態において、このエネルギー εj の統計的平均は、 となる。kB はボルツマン定数、T は絶対温度である。 つまり、理想的な系の熱平衡状態において、 1自由度あたりに平均で kBT /2 の運動エネルギーが割り振られ、 さらに調和振動子と見なせる自由度については 1自由度あたり平均 kBT /2 のポテンシャルエネルギーが割り振られる。 これをエネルギー等配分の法則と言う。 エネルギー等配分の法則は、エネルギーが上の式で示されるように二次形式で表現できる時に成り立つ(調和近似が成り立つ場合も含まれる)。系において、量子力学的な効果が顕著となる場合や、非調和項が無視できない場合は、この法則は成立しなくなる。 なお、自由度の数え方には、一般化座標と一般化運動量の対を1と数える流儀と、kBT /2 のエネルギーが分配されるものを1と数える流儀がある。.

新しい!!: プランクの法則とエネルギー等配分の法則 · 続きを見る »

エルグ

ルグ(erg)は、CGS単位系における仕事・エネルギー・熱量の単位である。その名前は、ギリシャ語で「仕事」を意味する単語εργον(ergon)に由来する。 1エルグは、1ダイン(dyn)の力がその力の方向に物体を1センチメートル(cm)動かすときの仕事と定義されている(g·cm/s)。この定義において、ダインをニュートン(N, 1N.

新しい!!: プランクの法則とエルグ · 続きを見る »

カシミール効果

ミール効果(カシミールこうか)は物理現象の一つ。 非常に小さい距離を隔てて設置された二枚の平面金属板が真空中で互いに引き合う現象を、静的カシミール効果という。また、二枚の金属板を振動させると光子が生じる。これを動的カシミール効果という。以下では、静的カシミール効果について述べる。 金属板どうしの距離が大きいと効果は極端に小さくなるが、距離が小さければ効果は測定可能な大きさとなる。例えば、距離が 10nm(原子の大きさの100倍程度)のとき、カシミール効果は一気圧と同じ力を与える。正確な値は表面の幾何学的構造や他の因子に依存する。 カシミール効果は物体仮想粒子の相互作用として表現することができる。効果の大きさは物体の間に介在する量子化された場の零点エネルギーを使って計算できる。現在の理論物理学では、カシミール効果は chiral bag model において重要な役割を果たしている。また応用物理学では、非常に小さい部品を扱うナノテクノロジーの分野でますます重要になっている。.

新しい!!: プランクの法則とカシミール効果 · 続きを見る »

キルヒホッフの法則 (放射エネルギー)

ルヒホッフの法則(キルヒホッフのほうそく、Kirchhoffsches Strahlungsgesetz) はグスタフ・キルヒホフが提唱した法則である。 放射率と吸収率が等しいという法則。局所熱平衡状態で成り立つ, 光と物体の相互作用に関する法則で、1860年に発見された。 物体が熱放射で放出する光のエネルギー(放射輝度)を, 同温の黒体が放出する光(黒体放射)のエネルギーで割った値を放射率(射出率)という。放射率は, 0以上1以下の値であり, 物質により, また, 波長により異なる。一方, ある波長の光が物体に当たった時, その光のエネルギーの内, 物体に吸収されるエネルギーの割合を吸収率という。吸収率も, 物体により, また, 波長により異なる。.

新しい!!: プランクの法則とキルヒホッフの法則 (放射エネルギー) · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: プランクの法則とグスタフ・キルヒホフ · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: プランクの法則とケルビン · 続きを見る »

シュテファン=ボルツマンの法則

ュテファン.

新しい!!: プランクの法則とシュテファン=ボルツマンの法則 · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: プランクの法則とジュール · 続きを見る »

ジョン・ウィリアム・ストラット (第3代レイリー男爵)

3代レイリー男爵ジョン・ウィリアム・ストラット(Baron Rayleigh、1842年11月12日 - 1919年6月30日)は、イギリスの物理学者。レイリー卿(レーリー卿あるいはレーリ卿とも、Lord Rayleigh)としても知られる。光の散乱の研究から空が青くなる理由を示す(レイリー散乱)、地震の表面波(レイリー波)の発見、ラムゼーとの共同研究によるアルゴンの発見、熱放射を古典的に扱ったレイリー・ジーンズの法則の導出などを行った。このほかにも流体力学(レイリー数)や毛細管現象の研究など、古典物理学の広範な分野に業績がある。 「気体の密度に関する研究、およびこの研究により成されたアルゴンの発見」により、1904年の ノーベル物理学賞を受賞した。.

新しい!!: プランクの法則とジョン・ウィリアム・ストラット (第3代レイリー男爵) · 続きを見る »

ジェームズ・ジーンズ

ェームズ・ジーンズ ジェームズ・ホップウッド・ジーンズ(Sir James Hopwood Jeans 、1877年9月11日 - 1946年9月16日)は、イギリスの物理学者、天文学者、数学者である。黒体輻射に関するレイリー・ジーンズの法則、惑星の起源に関する潮汐起源説などで知られる。.

新しい!!: プランクの法則とジェームズ・ジーンズ · 続きを見る »

スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

新しい!!: プランクの法則とスペクトル密度 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: プランクの法則とスピン角運動量 · 続きを見る »

サティエンドラ・ボース

ティエンドラ・ボース サティエンドラ・ナート・ボース(英語:Satyendra Nath Bose 、ベンガル語:ソッテンドロナート・ボスゥ সত্যেন্দ্রনাথ বসু 、ヒンディー語:サティエーンドラ・ナート・バスゥ सत्येन्द्र नाथ बसु 、1894年1月1日 - 1974年2月4日)は、インドの物理学者。ボース=アインシュタイン統計を光子の統計として導入。ボース粒子(ボソン、ボーズ粒子/ボゾンとも)として名を残す。 ボースは1894年に英領インドのカルカッタに生れた。1909年からカルカッタのプレジデンシー大学に入学した。1916年から教職に就き、ダッカ大学(1921年~1945年)を経てカルカッタ大学(1945年~1956年)の教授となった。 ボースはダッカ大学時代の1924年、アインシュタインのもとに「プランクの放射法則と光量子仮説」と題する論文を送った。それを読んだアインシュタインは非常に高く評価し、ドイツ語に翻訳して物理学雑誌に掲載させた。ここからボースによる光子の統計法の理論が広まり、アインシュタイン自身によって発展させられた。.

新しい!!: プランクの法則とサティエンドラ・ボース · 続きを見る »

光子

|mean_lifetime.

新しい!!: プランクの法則と光子 · 続きを見る »

光電効果

光電効果(こうでんこうか、photoelectric effect)とは、外部光電効果と内部光電効果の総称である。単に光電効果という場合は外部光電効果を指す場合が多い。内部光電効果は光センサなどで広く利用される。光電効果そのものは特異な現象ではなく酸化物、硫化物その他無機化合物、有機化合物等に普遍的に起こる。.

新しい!!: プランクの法則と光電効果 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: プランクの法則と光速 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: プランクの法則と国際単位系 · 続きを見る »

CGS単位系

CGS単位系(シージーエスたんいけい)は、センチメートル (centimetre)・グラム (gram)・秒 (second) を基本単位とする、一貫性のある単位系である。"CGS" は基本単位の頭文字をつなげたものである。 この単位系は1832年にカール・フリードリヒ・ガウスが提唱したのに始まる、物理学における量を距離・質量・時間の3つの独立な次元によって表そうとするものである。今日的な観点からは電磁気学を扱うには電荷の次元が欠けていたが、その導入は後のジョヴァンニ・ジョルジによる理論的な整理を待たなくてはならなかった。現在では電荷の次元が導入された、CGS静電単位系やCGS電磁単位系(後述)などとして用いられる。.

新しい!!: プランクの法則とCGS単位系 · 続きを見る »

状態密度

固体物理学および物性物理学において、系の状態密度(じょうたいみつど、, DOS)とは、微小なエネルギー区間内に存在する、系の占有しうる状態数を各エネルギーごとに記述する物理量である。気相中の原子や分子のようなとは異なり、密度分布はスペクトル密度のような離散分布ではなく連続分布となる。あるエネルギー準位において DOS が高いことは、そこに占有しうる状態が多いことを意味する。DOS がゼロとなることは、系がそのエネルギー準位を占有しえないことを意味する。一般的に DOS とは、空間的および時間的に平均されたものを言う。局所的な変動は局所状態密度 (LDOS) と呼ばれ区別される。.

新しい!!: プランクの法則と状態密度 · 続きを見る »

状態量

態量(じょうたいりょう、state quantity)とは、熱力学において、系(巨視的な物質または場)の状態だけで一意的に決まり、過去の履歴や経路には依存しない物理量のことである。元来は熱力学的平衡状態にある系だけで定義されるものだが,非平衡状態にも拡張されて用いられる。.

新しい!!: プランクの法則と状態量 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: プランクの法則と理想気体 · 続きを見る »

立体角

立体角(りったいかく、solid angle)とは、二次元における角(平面角)の概念を三次元に拡張したものである。 平面上における角とは、平面上の同一の点(角の頂点)から出る二つの半直線によって区切られた部分のことをいい、この2半直線の開き具合を角度という。角度は、角の頂点を中心とする半径 1の円から、2半直線が切り取った円弧の長さで表すことができる。 これに対し、空間上における立体角とは、空間上の同一の点(角の頂点)から出る半直線が動いてつくる錐面によって区切られた部分のことをいい、この錐面の開き具合を角度という。角度は、角の頂点を中心とする半径 1の球から錐面が切り取った面積の大きさで表すことができる。 立体角の計量単位には次の2つがある。.

新しい!!: プランクの法則と立体角 · 続きを見る »

箱の中の気体

本項では、量子力学における箱の中の量子的な理想気体について述べる。すなわち、容器に多数の分子が入っており、熱化のプロセスで一瞬に行われる衝突を除けば、分子どうしの相互作用を行わない系である。この系の平衡状態における性質を調べるには、無限の深さの井戸型ポテンシャルに置かれた量子的粒子についての結果を用いることができる。 この単純なモデルは、質量をもつ理想フェルミ気体や、質量を持つ理想ボース気体、質量をもたないボース気体として扱うことが可能な黒体放射などの様々な量子理想気体だけでなく、古典的な理想気体も記述することができる。黒体放射における熱化は、フォトンおよび熱平衡状態にある物体との間の相互作用により促進されると仮定される。 マクスウェル=ボルツマン統計またはボース=アインシュタイン統計またはフェルミ=ディラック統計の結果を用い、箱の大きさが無限大だとすると、トーマス=フェルミ近似によりエネルギー状態の縮退度は微分として、状態の総和は積分として表現される。 これにより気体の熱力学的な性質は分配関数やグランドカノニカル分配関数を用いて計算できる。 ここではいくつかの簡単な例を示す。.

新しい!!: プランクの法則と箱の中の気体 · 続きを見る »

粒子統計

粒子統計 (りゅうしとうけい、Particle statistics) は、粒子の集団が従う統計力学的な性質を言う。.

新しい!!: プランクの法則と粒子統計 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: プランクの法則と紫外線 · 続きを見る »

縮退

縮退(しゅくたい、Degeneracy、ごくまれに縮重とも)とは物理学において、2つ以上の異なったエネルギー固有状態が同じエネルギー準位をとること。.

新しい!!: プランクの法則と縮退 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: プランクの法則と統計力学 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: プランクの法則と無次元量 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

新しい!!: プランクの法則と熱力学的平衡 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: プランクの法則と物理学 · 続きを見る »

遷移

遷移(せんい)とは、「うつりかわり」のこと。類義語として「変遷」「推移」などがある。 自然科学の分野では transition の訳語であり、一般に、何らかの事象(物)が、ある状態から別の状態へ変化すること。さまざまな分野で使われており、場合によって意味が異なることもある。以下に解説する。.

新しい!!: プランクの法則と遷移 · 続きを見る »

表面

表面(ひょうめん、英:surface)は、.

新しい!!: プランクの法則と表面 · 続きを見る »

詳細釣り合い

詳細釣り合い(しょうさいつりあい、英語:detailed balance)は、熱平衡におけるミクロな状態変化を考えた場合、そこに含まれるどの過程の起こる頻度も、その逆過程の起こる頻度と等しいことを指す。その原理を「詳細釣り合いの原理」という。これは、時間反転を行っても、力学的な法則が不変であるところから導かれる。.

新しい!!: プランクの法則と詳細釣り合い · 続きを見る »

誘導放出

誘導放出(ゆうどうほうしゅつ、stimulated emission)とは、励起状態の電子(あるいは分子)が、外部から加えた電磁波(光子)によってより低いエネルギー準位にうつり、その分のエネルギーを電磁波として放出する現象である。このとき放出される光子は、外部から入射した光子と同じ位相、周波数、偏光を持ち、同じ方向に進む。 誘導放出を利用することで、光を位相や波長を揃えて(コヒーレントに)増幅することができ、レーザーの発振などに応用されている。.

新しい!!: プランクの法則と誘導放出 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: プランクの法則と黒体 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: プランクの法則と赤外線 · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: プランクの法則と量の次元 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: プランクの法則と量子力学 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: プランクの法則と量子化 · 続きを見る »

量子化 (物理学)

物理学において、量子化(りょうしか、quantization)は古典力学で理解されていた物理現象を"量子力学"の文脈によって説明し直す過程である。これは、場の量子化についても言及する。.

新しい!!: プランクの法則と量子化 (物理学) · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: プランクの法則と量子論 · 続きを見る »

自然放出

自然放出(しぜんほうしゅつ、英語:spontaneous emission)とは、光源となる物質 (原子、分子、原子核など) が励起状態からよりエネルギーの低い量子状態 (たとえば基底状態) へ移り、その際に光子を放出する過程のことである。 自然放出と誘導放出の異なる点は、自然放出の場合には自発的に励起状態から別のエネルギー状態への遷移が起こることであり、自然放出による光の強さは、外部から入力される光の強さに比例しない。 半古典論による取り扱いでは自然放出は記述できず、誘導放出しか理論に現れない。量子化された光を用いることで自然放出が記述できるようになる。量子化された電磁波 (つまり調和振動子の集まり) の零点振動に誘起されるものが自然放出である。 自然放出は多くの自然現象で重要な役割を果たし、応用面においても、蛍光灯や、テレビなどのモニターに用いられるブラウン管、プラズマディスプレイ、発光ダイオード (LED) などに利用されている。.

新しい!!: プランクの法則と自然放出 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: プランクの法則と英語 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: プランクの法則と電磁波 · 続きを見る »

逆温度

逆温度(ぎゃくおんど、inverse temperature) は、統計力学によって定義される物理量。統計集団を用いて平衡状態を記述する際に重要な役割を担うパラメーターとして現れる。逆温度βは絶対温度Tとボルツマン定数kBを用いて次のように定義される。.

新しい!!: プランクの法則と逆温度 · 続きを見る »

Portable Document Format

Portable Document Format(ポータブル・ドキュメント・フォーマット、略称:PDF)は、アドビシステムズが開発および提唱する、電子上の文書に関するファイルフォーマットである。1993年に発売されたAdobe Acrobatで採用された。 特定の環境に左右されずに全ての環境でほぼ同様の状態で文章や画像等を閲覧できる特性を持っている。 アドビシステムズはPDF仕様を1993年より無償で公開していたが、それでもPDF規格はAdobeが策定するプロプライエタリなフォーマットであった。2008年7月には国際標準化機構によってISO 32000-1として標準化された。アドビはISO 32000-1 についての特許を無償で利用できるようにしたが、XFA (Adobe XML Forms Architecture) やAdobe JavaScriptなどはアドビのプロプライエタリな部分として残っている。.

新しい!!: プランクの法則とPortable Document Format · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: プランクの法則と波長 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: プランクの法則と温度 · 続きを見る »

指数関数的減衰

指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 によって表される。ここでN (t) は時刻t における減衰する量であり、λは崩壊定数と呼ばれる正の数である。崩壊定数の単位は s-1 である。 この微分方程式を解くと(詳細は後述)、この現象は指数関数 によって表される。ここでN0.

新しい!!: プランクの法則と指数関数的減衰 · 続きを見る »

放射輝度

放射輝度(ほうしゃきど、)とは、放射源の表面上の点からある方向へと放出される放射束を表す物理量である。英語名のままラディアンスとも呼ばれる。放射輝度は、放射束の立体角と放射源表面の投影面積による微分として定義される。拡散源からの放射と、拡散面からの乱反射の両方に用いられる。 SIにおける単位はワット毎平方メートル毎ステラジアン(記号: W sr m)が用いられる。.

新しい!!: プランクの法則と放射輝度 · 続きを見る »

放射束

放射束(ほうしゃそく、)とは、ある面を時間あたりに通過する放射エネルギーを表す物理量である。SI単位はワット(記号: W)が用いられる。 放射源を囲う面を通り抜ける全放射束は放射源の仕事率()に等しい。放射源が電流によるものであれば、損失がなければ、消費電力と等しく、放射電力(ほうしゃでんりょく、)とも呼ばれる。 一般的には電磁波に対して放射束の概念を用いることが多いが、エネルギーの放射であれば放射束の概念を用いることができて、音波や粒子線の放出に対しても放射束を考えることができる。.

新しい!!: プランクの法則と放射束 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: プランクの法則と整数 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: プランクの法則と時間 · 続きを見る »

1900年

19世紀最後の年である。100で割り切れるが400では割り切れない年であるため、閏年ではなく、4で割り切れる平年となる。.

新しい!!: プランクの法則と1900年 · 続きを見る »

2状態系

量子力学において、2状態系(2じょうたいけい、two-state system)とは、2つの独立な量子状態から構成される量子系である。自明ではない量子系としては最も簡単なものであるが、量子力学の特徴的な性質を備える。コインの表裏のような古典対応物と異なり、2状態系の量子状態を記述する状態ベクトルは、2つの独立な状態の重ね合わせの比率と位相差が異なる無限に多くの状態を取り得る。こうした性質は量子情報理論での量子ビットの基礎をなす。2状態系として記述される系は電子や原子核のスピン の系、光子の偏光状態、共鳴波長の光に応答する原子の2準位系、ニュートリノ振動、アンモニア分子の反転モードなどの豊富な物理現象を含む。また、核磁気共鳴やアンモニアメーザーの理論的な基礎付けを与えている。J. J. Sakurai の著書 "Modern quantum mechanics" ではノーベル賞受賞者で2状態系の解析に携わった者として、7人の名を挙げている。.

新しい!!: プランクの法則と2状態系 · 続きを見る »

ここにリダイレクトされます:

プランクの式プランクの分布式プランクの公式プランクの放射式プランクの放射公式プランクの放射法則プランクの輻射式プランクの輻射公式プランクの輻射法則プランク分布エネルギー量子仮説

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »