ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

プランクの法則

索引 プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

49 関係: 宇宙の距離梯子伝熱ノーベル物理学賞マックス・プランクランベルトのW関数リモートセンシングリュードベリ・リッツの結合原理レイリー・ジーンズの法則ヴィルヘルム・ヴィーンヴィーンの放射法則ボロメータボース=アインシュタイン凝縮プランク定数パイロメーターデバイ模型ウィーンの変位則カーボンナノチューブ黒体キルヒホッフの法則 (放射エネルギー)コンプトン効果シュテファン=ボルツマンの法則光の粒子説光子光子気体前期量子論箱の中の気体生体電磁気熱放射物理学物理学に関する記事の一覧物理法則一覧D65光源観測的宇宙論黒体黒体放射赤外線量子力学量子統計力学量子論色温度電磁波法則の一覧温度放射冷却放射法則放射温度計12月14日1900年1900年代19世紀

宇宙の距離梯子

宇宙の距離梯子(うちゅうのきょりはしご)とは、宇宙に存在する天体の、地球からの距離の測定方法の総称である。地球から遠方にある天体の距離を直接測る方法は複数提案されているが、それぞれには限界があったり、または期待される値の精度が距離によって制約されるなどの問題があり、使い分けを余儀なくされている。そのため、天体の距離判定は天文学における難問のひとつとなっている。 現状では広大な宇宙にあるすべての天体距離を測る統一的方法が存在しないため、ひとつの方法で近い天体の距離を測定し、それを基準に別な方法でさらに遠方の天体距離を求め、これを繰り返さざるを得ない。この過程が、高低差がある地面に梯子を架けながら徐々にステップを踏み進んでいく様に似ていることから、距離梯子という名で呼ばれている。 以下、一般的な距離梯子について、近距離から順に解説する。.

新しい!!: プランクの法則と宇宙の距離梯子 · 続きを見る »

伝熱

伝熱(でんねつ、)とは、熱エネルギーが、空間のある場所から別の場所に移動する現象。熱移動ともいう。伝熱は、熱の移動現象を扱う工学であり、熱工学の一分野である。.

新しい!!: プランクの法則と伝熱 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: プランクの法則とノーベル物理学賞 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: プランクの法則とマックス・プランク · 続きを見る »

ランベルトのW関数

数学におけるランベルト W 函数(ランベルトWかんすう、Lambert W function)あるいはオメガ函数 (ω function), 対数積(product logarithm; 乗積対数)は、函数 の逆関係の分枝として得られる函数 の総称である。ここに は指数函数で は任意の複素数とする。すなわち は を満たす。 上記の方程式で と置きかえれば、任意の複素数 に対する 函数(一般には 関係)の定義方程式 を得る。 函数 は単射ではないから、関係 は( を除いて)多価である。仮に実数値の に注意を制限するとすれば、複素変数 は実変数 に取り換えられ、関係の定義域は区間 に限られ、また開区間 上で二価の函数になる。さらに制約条件として を追加すれば一価函数 が定義されて、 および を得る。それと同時に、下側の枝は であって、 と書かれる。これは から まで単調減少する。 ランベルト 関係は初等函数では表すことができない。ランベルト は組合せ論において有用で、例えば木の数え上げに用いられる。指数函数を含む様々な方程式(例えばプランク分布、ボーズ–アインシュタイン分布、フェルミ–ディラック分布などの最大値)を解くのに用いられ、また のような の解としても生じる。生化学において、また特に酵素動力学において、ミカエリス–メンテン動力学の経時動力学解析に対する閉じた形の解はランベルト 函数によって記述される。 W の絶対値で決定している。.

新しい!!: プランクの法則とランベルトのW関数 · 続きを見る »

リモートセンシング

リモートセンシング (Remote Sensing) とは、対象を遠隔から測定する手段であり、その定義は幅広い。 しかし、狭義には、人工衛星や航空機などから地球表面付近を観測する技術を指すことが多い。 リモートセンシングには、観測装置(センサー)と、それを上空に運ぶためのプラットフォームが必要である。観測装置としては、写真、放射計、レーザープロファイラー、レーダーなどが使われる。 プラットフォームとしては、飛行機、気球、ヘリコプター、人工衛星などが使われる。 広範囲を観測できる、人が行きにくい場所(危険地域)が観測できる、などの利点がある。.

新しい!!: プランクの法則とリモートセンシング · 続きを見る »

リュードベリ・リッツの結合原理

リュードベリ・リッツの結合原理 (-結合法則, Rydberg-Ritz Combination Principle)、またはリッツの結合則は、1908年にヴァルター・リッツ(Walter Ritz)によって提出された、原子から放射される光の輝線(スペクトル)に働く関係性を示す理論である。 結合原理は、あらゆる元素について、輝線に含まれる周波数(振動数)が、2つの異なる輝線の周波数の和か差として表されることを述べる。 原子は、充分高いエネルギーを持った光子を吸光して、励起状態となり高いエネルギー状態となったり、光子を自然放出して低いエネルギー状態になることがある。しかし、量子力学の原理に従えば、これらの励起や放射(放出)といった現象は、決まったエネルギー差の間でのみ起こり得る。リュードベリ・リッツの結合法則は、この過程を説明する経験的法則である。.

新しい!!: プランクの法則とリュードベリ・リッツの結合原理 · 続きを見る »

レイリー・ジーンズの法則

レイリー・ジーンズの法則(レイリー・ジーンズのほうそく、Rayleigh–Jeans Law)は、黒体から放射される電磁波のエネルギー密度の理論式の1つである。 黒体から放射される電磁波のうち、波長が λ から λ+dλの間にある電磁波のエネルギー密度を f(&lambda)dλ とすると、レイリー・ジーンズの法則は、 と表される。ここで、T は熱力学温度、k は ボルツマン定数である。 この式は、.

新しい!!: プランクの法則とレイリー・ジーンズの法則 · 続きを見る »

ヴィルヘルム・ヴィーン

ヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン(独: Wilhelm Carl Werner Otto Fritz Franz Wien、1864年1月13日 - 1928年8月30日)は、ドイツの物理学者。英語風にウィルヘルム・ウィーンと表記されることもある。熱力学、特に黒体放射に関する研究で知られる。ヴィーンが発見したヴィーンの変位則やヴィーンの放射法則はマックス・プランクの量子論に直接結びつくもので、後にマックス・フォン・ラウエをして「ヴィーンの不滅の栄光は我々を量子力学の玄関口に導いた」と言わしめた。 1911年、「熱放射の諸法則に関する発見」によりノーベル物理学賞を受賞した。.

新しい!!: プランクの法則とヴィルヘルム・ヴィーン · 続きを見る »

ヴィーンの放射法則

ヴィーンの放射法則(ヴィーンのほうしゃほうそく、)、あるいはヴィーンの公式、ヴィーンの分布式とは、熱輻射により黒体から放出される電磁波のスペクトルを与える理論式である。 この法則は1896年にヴィルヘルム・ヴィーンによって導かれたMehra and Rechenberg "The Historical Development of Quantum Theory"Bowley and Sánchez "Introductory Statistical Mechanics"。短波長(高周波数)領域における近似式であり、ヴィーン近似とも呼ばれる。 長波長(低周波数)領域では実験とずれが生じて記述できないが、全ての波長領域で正しく記述されるようにプランクの法則の形に修正された。英語の発音に基づくウィーンのカナ表記、呼称も用いられる。.

新しい!!: プランクの法則とヴィーンの放射法則 · 続きを見る »

ボロメータ

NASA/JPL-Caltech。 ボロメータ (bolometer、、測るもの、放射物の から)は入射する電磁波などの放射のエネルギーを、温度に依存する電気抵抗を持つ物質の受ける熱を通して計測する観測機器である。1878年にアメリカ人天文学者サミュエル・ラングレーにより発明された。名前は、光線のことを放り投げられたものを意味する により表現している。 熱力学における熱量計として使用する事が本来の使用法である。低温物理学に於いて代替し得る物は無い。 20世紀初頭には既に現在の形態になったが、近年、MEMS技術を取り入れる事で赤外線撮像素子等、応用範囲が広がりつつある。.

新しい!!: プランクの法則とボロメータ · 続きを見る »

ボース=アインシュタイン凝縮

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、Bose-Einstein condensation英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。)、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象 上田 (1998) E.A. Cornel ''et al.'' (1999) F. Dalfavo ''et al.'' (1999) W. Kettelrle ''et al.'' (1999)。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言されたA. Pais (2005), chapter.23 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学の研究グループはルビジウム87(87Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム23(23Na)の希薄な中性アルカリ原子気体でのBECを実現させた。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術やなどの捕獲技術の確立が不可欠であった (free access) (free access)。2001年のノーベル物理学賞は、これらのBEC実現の実験的成果に対し、授与された。.

新しい!!: プランクの法則とボース=アインシュタイン凝縮 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: プランクの法則とプランク定数 · 続きを見る »

パイロメーター

パイロメーター(Pyrometer)は、熱放射を感知し測定する非接触装置であり、物体の表面温度を測定するのに用いられる。(色温度、Planck's law of black body radiation) このパイロメーターの語は、測定を意味する“メーター”の頭に、ギリシャ語で火を意味する "πυρ" をつけたものである。この語は元々、白熱している物体(つまり、可視光線を出している物体)の温度を測定する機器に名づけられたものである。.

新しい!!: プランクの法則とパイロメーター · 続きを見る »

デバイ模型

デバイ模型(デバイもけい、Debye model)とは熱力学と固体物理学において、固体におけるフォノンの比熱(熱容量)への寄与を推定する手法である。1912年にピーター・デバイにより考え出された。デバイ模型では、原子の熱による格子振動を箱の中のフォノンとして扱う。一方、先に発表されていたアインシュタイン模型では、固体を相互作用のない量子的な調和振動子の集まりとして取り扱う。 デバイ模型は低温における比熱が温度の三乗 に比例することを正しく予言する。また、アインシュタイン模型同様、比熱の高温におけるデュロン=プティの法則に従う振る舞いも正しく説明することができる。しかし、格子振動を単純化して扱っているため、中間的な温度における正確性には弱点がある。 デバイ模型についての厳密な取り扱いについては、を参照。.

新しい!!: プランクの法則とデバイ模型 · 続きを見る »

ウィーンの変位則

各温度における黒体輻射のエネルギー密度の波長ごとのスペクトル ヴィーンの変位則(ウィーンのへんいそく、Wien's displacement law)とは、黒体からの輻射のピークの波長が温度に反比例するという法則である。ヴィルヘルム・ヴィーンによって発見された。ヴィーンはドイツの物理学者であるため「ヴィーン」が正しい名称となるが、慣習的に英語読みのウィーンの変位則とよばれることも多い。 ここで は黒体の温度(K)、 はピーク波長(m)、 は比例定数でありその値は である。CGS単位系では は約 0.29 cm·K である。.

新しい!!: プランクの法則とウィーンの変位則 · 続きを見る »

カーボンナノチューブ黒体

ーボンナノチューブ黒体(カーボンナノチューブこくたい)はスーパーグロースCVD法による単層カーボンナノチューブ(SWNT)のナノスケール垂直配向構造を利用した、最も黒体に近い物質。紫外線(UV-C)から可視光線、遠赤外線(F-IR)200nm-200µmまでの広い波長域で99%の光(電磁波)を吸収し、従来の黒体に最も近い物質に比べ3倍の性能がある。.

新しい!!: プランクの法則とカーボンナノチューブ黒体 · 続きを見る »

キルヒホッフの法則 (放射エネルギー)

ルヒホッフの法則(キルヒホッフのほうそく、Kirchhoffsches Strahlungsgesetz) はグスタフ・キルヒホフが提唱した法則である。 放射率と吸収率が等しいという法則。局所熱平衡状態で成り立つ, 光と物体の相互作用に関する法則で、1860年に発見された。 物体が熱放射で放出する光のエネルギー(放射輝度)を, 同温の黒体が放出する光(黒体放射)のエネルギーで割った値を放射率(射出率)という。放射率は, 0以上1以下の値であり, 物質により, また, 波長により異なる。一方, ある波長の光が物体に当たった時, その光のエネルギーの内, 物体に吸収されるエネルギーの割合を吸収率という。吸収率も, 物体により, また, 波長により異なる。.

新しい!!: プランクの法則とキルヒホッフの法則 (放射エネルギー) · 続きを見る »

コンプトン効果

ンプトン効果(コンプトンこうか、Compton effect)とは、X線を物体に照射したとき、散乱X線の波長が入射X線の波長より長くなる現象である。これは電子によるX線の非弾性散乱によって起こる現象であり、X線(電磁波)が粒子性をもつこと、つまり光子として振る舞うことを示す。また、コンプトン効果の生じる散乱をコンプトン散乱(コンプトンさんらん、Compton scattering)と呼ぶ。 .

新しい!!: プランクの法則とコンプトン効果 · 続きを見る »

シュテファン=ボルツマンの法則

ュテファン.

新しい!!: プランクの法則とシュテファン=ボルツマンの法則 · 続きを見る »

光の粒子説

光の粒子説(ひかりのりゅうしせつ、corpuscular theory of light, particle theory of light)とは、光の本質は粒子であると仮定すると説明が容易な多数の実験の存在を根拠にした仮説である。.

新しい!!: プランクの法則と光の粒子説 · 続きを見る »

光子

|mean_lifetime.

新しい!!: プランクの法則と光子 · 続きを見る »

光子気体

光子気体(こうしきたい、photon gas)、もしくは光子ガスは、光子の気体に似た集合のことである。ここで「似た」と述べたのは、系の圧力、温度、エントロピーといった物理量に関して、水素やヘリウムといった一般系な気体と同様の性質を示すことを指す。 1種類の粒子からなる理想気体の系の状態は、例えば温度・体積・粒子数の3つの状態変数によって一意的に表せる。しかし、黒体輻射(より考えやすくは空洞放射)の場合、エネルギー分布は光子と物体(通常は空洞の壁)の相互作用で決まる。この相互作用において、光子数は保存されない。すなわち、黒体輻射における光子気体の化学ポテンシャルはゼロである。よって、黒体輻射を記述するために必要な状態変数の数は、理想気体のときよりも少なく2つ(例えば温度と体積)である。.

新しい!!: プランクの法則と光子気体 · 続きを見る »

前期量子論

前期量子論(ぜんきりょうしろん、Old quantum theory)は古典力学(統計力学)の時代から、ハイゼンベルクの行列力学、シュレーディンガーの波動力学等による本格的な量子力学の構築が始まるまで(1920年代中頃)の、過渡期に現れた量子効果に関しての一連の量子論的理論。.

新しい!!: プランクの法則と前期量子論 · 続きを見る »

箱の中の気体

本項では、量子力学における箱の中の量子的な理想気体について述べる。すなわち、容器に多数の分子が入っており、熱化のプロセスで一瞬に行われる衝突を除けば、分子どうしの相互作用を行わない系である。この系の平衡状態における性質を調べるには、無限の深さの井戸型ポテンシャルに置かれた量子的粒子についての結果を用いることができる。 この単純なモデルは、質量をもつ理想フェルミ気体や、質量を持つ理想ボース気体、質量をもたないボース気体として扱うことが可能な黒体放射などの様々な量子理想気体だけでなく、古典的な理想気体も記述することができる。黒体放射における熱化は、フォトンおよび熱平衡状態にある物体との間の相互作用により促進されると仮定される。 マクスウェル=ボルツマン統計またはボース=アインシュタイン統計またはフェルミ=ディラック統計の結果を用い、箱の大きさが無限大だとすると、トーマス=フェルミ近似によりエネルギー状態の縮退度は微分として、状態の総和は積分として表現される。 これにより気体の熱力学的な性質は分配関数やグランドカノニカル分配関数を用いて計算できる。 ここではいくつかの簡単な例を示す。.

新しい!!: プランクの法則と箱の中の気体 · 続きを見る »

生体電磁気

生体電磁気(せいたいでんじき、Bioelectromagnetism)とは生体信号の一種で生体から放射される電磁気。.

新しい!!: プランクの法則と生体電磁気 · 続きを見る »

熱放射

熱放射(ねつほうしゃ、thermal radiation)は、伝熱の一種で、熱が電磁波として運ばれる現象。または物体が熱を電磁波として放出する現象をさす。熱輻射(ねつふくしゃ)、あるいは単に輻射ともいう。 熱を運ぶ過程には大きく分けて次の三通りがある。.

新しい!!: プランクの法則と熱放射 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: プランクの法則と物理学 · 続きを見る »

物理学に関する記事の一覧

物理学用語の一覧。物理学者名は含まない。;他の物理学関係の一覧.

新しい!!: プランクの法則と物理学に関する記事の一覧 · 続きを見る »

物理法則一覧

この物理法則一覧(ぶつりほうそくいちらん)では、物理法則の一覧を提示した。.

新しい!!: プランクの法則と物理法則一覧 · 続きを見る »

D65光源

D65の分光分布。 CIE標準光源D65 (CIEひょうじゅんこうげんD65) (D65とも記載) は、国際照明委員会 (CIE) により定義された標準光源である 。Dシリーズとして定義されている光源の一つであり、屋外の照明環境を再現することを目的に定義されている。 D65は、欧州/北欧における平均的な正午の光  (直射日光と晴天の空による拡散光の合わさった光) に対応しており、昼光光源とも呼ばれている。 標準光源は波長ごとの平均スペクトルとして定義されているので、統計的に同じ相対を持つ光源は、D65光源であるとみなすことができる。実際のD65光源というのは存在せず、D65光源をシミュレートする疑似光源しか存在しない。光源の精度はCIE条件等色指数で評価される。 CIEはD65光源を標準昼光光源として以下のように位置づけしている: D光源の相対分光分布と、約560nmで正規化された対応する黒体の色温度。.

新しい!!: プランクの法則とD65光源 · 続きを見る »

観測的宇宙論

観測的宇宙論(かんそくてきうちゅうろん、Observational cosmology)は、望遠鏡や宇宙線などの観測により、宇宙の起源、進化、構造を研究する学問である。.

新しい!!: プランクの法則と観測的宇宙論 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: プランクの法則と黒体 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: プランクの法則と黒体放射 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: プランクの法則と赤外線 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: プランクの法則と量子力学 · 続きを見る »

量子統計力学

量子統計力学 (りょうしとうけいりきがく、) とは量子力学的な系を扱う統計力学の手法。統計力学の基礎づけは量子力学に拠っているため、広義には統計力学一般を意味し、狭義には古典近似を用いないモデルを指す。対義語は古典統計力学。.

新しい!!: プランクの法則と量子統計力学 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: プランクの法則と量子論 · 続きを見る »

色温度

色温度(いろおんど、しきおんど、英語:color temperature)とは、ある光源が発している光の色を定量的な数値で表現する尺度(単位)である。単位には熱力学的温度の '''K(ケルビン)''' を用いる。.

新しい!!: プランクの法則と色温度 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: プランクの法則と電磁波 · 続きを見る »

法則の一覧

法則の一覧(ほうそくのいちらん)は、固有名として使われる法則を示す。学問上の法則、社会一般で言われる法則を含む。法則の名称の後ろの注記は分野を示す。ただし「法則」という言葉は、しばしば書籍のタイトル等に用いられるが、この項では混乱を避けるためそういった類のものは省略している。物理に関する法則は「物理法則一覧」を参照。.

新しい!!: プランクの法則と法則の一覧 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: プランクの法則と温度 · 続きを見る »

放射冷却

放射冷却(ほうしゃれいきゃく)とは、高温の物体が周囲に電磁波を放射し温度が下がる事。身の回りのあらゆる物においても日常的に見られる現象(例:熱いフライパンを放置すれば冷める)。また、非電化冷蔵庫にもこの原理が利用されていると言われている。.

新しい!!: プランクの法則と放射冷却 · 続きを見る »

放射法則

放射法則(ほうしゃほうそく、radiation law, law of radiation)とは熱平衡にある熱放射のエネルギースペクトルと温度との関係を表わす法則のことで、以下のような法則がある。.

新しい!!: プランクの法則と放射法則 · 続きを見る »

放射温度計

放射温度計(ほうしゃおんどけい)は、物体から放射される赤外線や可視光線の強度を測定して、物体の温度を測定する温度計である。 これらの赤外線や可視光線といった熱放射は黒体放射によって生じ、温度と放出エネルギーとの関係を表すシュテファン=ボルツマンの法則およびプランクの法則によって、物体の温度を算出することができるのを活用している(色温度)。 放射温度計の主な長所は、測定が高速に行えることと、非接触で測定可能な点である。非接触で測定可能なことは、熱伝導によって測定対象と温度計とが同じ温度になる必要がある多くの温度計・測定方法と違い、短時間で温度測定が可能となる要因ともなっている。.

新しい!!: プランクの法則と放射温度計 · 続きを見る »

12月14日

12月14日(じゅうにがつじゅうよっか、じゅうにがつじゅうよんにち)はグレゴリオ暦で年始から348日目(閏年では349日目)にあたり、年末まであと17日ある。.

新しい!!: プランクの法則と12月14日 · 続きを見る »

1900年

19世紀最後の年である。100で割り切れるが400では割り切れない年であるため、閏年ではなく、4で割り切れる平年となる。.

新しい!!: プランクの法則と1900年 · 続きを見る »

1900年代

1900年代(せんきゅうひゃくねんだい)は、.

新しい!!: プランクの法則と1900年代 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: プランクの法則と19世紀 · 続きを見る »

ここにリダイレクトされます:

プランクの式プランクの分布式プランクの公式プランクの放射式プランクの放射公式プランクの放射法則プランクの輻射式プランクの輻射公式プランクの輻射法則プランク分布エネルギー量子仮説

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »