ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ジョン・ウィリアム・ストラット (第3代レイリー男爵)

索引 ジョン・ウィリアム・ストラット (第3代レイリー男爵)

3代レイリー男爵ジョン・ウィリアム・ストラット(Baron Rayleigh、1842年11月12日 - 1919年6月30日)は、イギリスの物理学者。レイリー卿(レーリー卿あるいはレーリ卿とも、Lord Rayleigh)としても知られる。光の散乱の研究から空が青くなる理由を示す(レイリー散乱)、地震の表面波(レイリー波)の発見、ラムゼーとの共同研究によるアルゴンの発見、熱放射を古典的に扱ったレイリー・ジーンズの法則の導出などを行った。このほかにも流体力学(レイリー数)や毛細管現象の研究など、古典物理学の広範な分野に業績がある。 「気体の密度に関する研究、およびこの研究により成されたアルゴンの発見」により、1904年の ノーベル物理学賞を受賞した。.

70 関係: 古典物理学古典論寺田寅彦地震波ノーベル化学賞ノーベル物理学賞マックス・プランクネイチャーランフォード・メダルリウマチ熱レイリー (単位)レイリー・テイラー不安定性レイリー・ジーンズの法則レイリー分布レイリー商レイリー男爵レイリー散乱レイリー数ロイヤル・メダルヴィルヘルム・ヴィーンボルト (単位)トリニティ・カレッジ (ケンブリッジ大学)ヘルマン・フォン・ヘルムホルツ分光器分解能アルゴンアンペアアンモニアアーサー・バルフォアイギリスイギリス国立物理学研究所ウィリアム・ラムゼーウィリアム・プラウトエーテル (物理)エドワード・ラウスエアロゾルエジプトエセックスオームカントリー・ハウスキャヴェンディッシュ研究所ケンブリッジ大学コプリ・メダルジャガディッシュ・チャンドラ・ボースジョン・ティンダルジョージ・ガブリエル・ストークスジョゼフ・ジョン・トムソンジェームズ・クラーク・マクスウェルジェームズ・ジーンズ共鳴...回折格子王立協会窒素物理学者相対性理論青空文庫表面弾性波黒体黒体放射量子論酸素標準化毛細管現象流体力学散乱11月12日1842年1904年1919年6月30日 インデックスを展開 (20 もっと) »

古典物理学

古典物理学(こてんぶつりがく、Physics in the Classical Limit)とは、量子力学を含まない物理学。その多くは量子力学が発達する前の原理に基づいて体系だてられたものだが、量子力学と同時またはそれ以降に構築された特殊相対性理論、一般相対性理論も含まれる。現代物理学の対義語では必ずしもないので注意を要する。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と古典物理学 · 続きを見る »

古典論

物理学における古典論とは、物理学の理論・手法において量子力学を陽に扱わないもののことである。対義語は量子論。 現代物理学における基本理論の一つである量子力学は、ある対象に対して極めて高精度の結果を与える理論であり、物性物理学における問題のほとんどは原理的には量子力学によって完全に記述されると考えられる。量子力学的効果は、特に分子・原子レベルやより小さなスケールでは本質的な効果を持ち、量子力学を考慮しない場合は、例えば原子が安定に存在し得ない等、現実と大きく異なる結果となる。原子・分子レベルの現象の古典論的扱いと量子論的扱いによる結果の大きな差異は、量子論や自然の本質を理解する上で重要である。 なお、量子力学は数学的な取扱いが著しく困難であり、現実の複雑な系を量子力学を用いて描くことは不可能な場合がほとんどである。一方で量子力学的な効果は、原子レベルでは本質的な効果を持つが、マクロな系への効果は一般にわずかであり、実用的な理論・手法としては、量子力学的効果を無視したり、古典力学の範囲内で取扱い可能な形に埋め込んだりすることが行われる。このように量子力学を陽に扱うことを回避した理論・手法も古典論と呼ばれ、現代物理学における重要な部門の一つである。 古典論の体系の大半は、ニュートンから始まり量子力学にはいたらない期間に構築された非相対論的な古典力学であるが、量子力学と同時期あるいはそれ以降に構築され現代物理学の一角をなす相対性理論も、量子力学を考慮に入れない限りでは古典論に含まれる。このように物理学における「古典論」という言葉は、あくまで「量子論」の対義語であり、伝統的・現代的の対比で用いることは一般的ではない。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と古典論 · 続きを見る »

寺田寅彦

寺田 寅彦(てらだ とらひこ、1878年(明治11年)11月28日 - 1935年(昭和10年)12月31日)は、戦前の日本の物理学者、随筆家、俳人。吉村冬彦(大正11年から使用)、寅日子、牛頓(“ニュートン”)、藪柑子(“やぶこうじ”)の筆名でも知られる。高知県出身(出生地は東京市)。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と寺田寅彦 · 続きを見る »

地震波

地震波 実体波P波 S波 表面波ラブ波 レイリー波 地震波(じしんは、、)は、地震により発生する波。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と地震波 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とノーベル化学賞 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とノーベル物理学賞 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とマックス・プランク · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とネイチャー · 続きを見る »

ランフォード・メダル

ランフォード・メダル(Rumford Medal)はイギリスの王立協会が熱と光のすぐれた研究に与える賞である。アメリカ芸術科学アカデミーが与える賞のランフォード賞(Rumford Prize)もある。 1796年に、ランフォード伯爵ベンジャミン・トンプソンが王立協会とアメリカ芸術科学アカデミーにそれぞれ$5000を寄付して、2年ごとに熱と光の分野の優れた業績に贈られる賞が創設された。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とランフォード・メダル · 続きを見る »

リウマチ熱

リウマチ熱(リウマチねつ)とは、A群溶連菌に感染して後1~3週間に生じる全身性の非化膿性疾患の一つである。特徴として結合織の炎症が関節、心臓、血管、神経等を冒すとされる。特に心臓では弁膜、心内外膜、心筋が好発部位であり、5~15歳が好発年齢である。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とリウマチ熱 · 続きを見る »

レイリー (単位)

レイリー (Rayleigh) とは、単位面積・単位時間・単位ステラジアンあたりに入射する光子の数を表す単位。イギリスの物理学者であるレイリー卿にちなんで名づけられた。 1レイリーはある観測点で、一定の方向からの光の強さを測定したとき、1秒間に1平方センチメートルの面積に1ステラジアン方向から100万個の光子が入射する状態のこと。 天の川が約1キロレイリー。満月は1メガレイリーくらい。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー (単位) · 続きを見る »

レイリー・テイラー不安定性

レイリー・テイラー不安定性(レイリー・テイラーふあんていせい、)とは、密度の異なる2つの流体が界面で接触する際に、密度の大きい流体から密度の小さい流体に力が働き、界面の微小な凹凸から擾乱が成長することにより、流体の運動が不安定化する現象である。 例えば、水とそれより密度の低い油が上層の水と下層の油のように分離している場合、境界は不安定な平衡状態となり、わずかな外乱が加えられると瞬く間に両者の位置が入れ替わる。このように、重力等の作用によって密度の大きい流体が小さい流体を押すことにより生じる現象がレイリー・テイラー不安定性である。 レイリー・テイラー不安定性は、レーザー核融合においては中心点火方式での球対称爆縮を阻害する最大の要因である。また、超新星爆発のような星内部の物質混合過程におけるレイリー・テイラー不安定性も盛んに研究されている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー・テイラー不安定性 · 続きを見る »

レイリー・ジーンズの法則

レイリー・ジーンズの法則(レイリー・ジーンズのほうそく、Rayleigh–Jeans Law)は、黒体から放射される電磁波のエネルギー密度の理論式の1つである。 黒体から放射される電磁波のうち、波長が λ から λ+dλの間にある電磁波のエネルギー密度を f(&lambda)dλ とすると、レイリー・ジーンズの法則は、 と表される。ここで、T は熱力学温度、k は ボルツマン定数である。 この式は、.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー・ジーンズの法則 · 続きを見る »

レイリー分布

記載なし。

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー分布 · 続きを見る »

レイリー商

数学における、与えられた複素エルミート行列 と零でないベクトル に対するレイリー商(れいりーしょう、Rayleigh quotient)またはレイリー・リッツ比(れいりー・りっつひ、Rayleigh–Ritz ratio)は次のように定義される: 名称は物理学者のレイリー卿とヴァルター・リッツに因む。 実行列および実ベクトルについて、エルミート行列である条件は対称行列である条件に、共役転置 は単なる転置 に一致し、また任意の零でない実スカラー に対してレイリー商は を満たす。エルミート(または実対称)行列の性質より、その固有値は実数であるから、レイリー商 の最小値は行列 の最小の固有値 に等しく、このときベクトル は最小固有値に対応する固有ベクトル に等しい。同様にレイリー商の最大値は行列 の最大固有値 に等しく、このときベクトル は最大固有値に対応する固有ベクトル に等しい。 レイリー商はにおいて行列のすべての固有値の厳密な値を求めることに利用される。また固有値計算アルゴリズムにおいて近似的な固有ベクトルから固有値の近似値を求めることにも利用される。具体的には、に基づく。 エルミート行列に限らない一般のレイリー商の値域はと呼ばれる(あるいは関数解析学においてはスペクトルという)。エルミート行列のレイリー商について、その数域はスペクトルノルムに等しい。関数解析学においては、 はスペクトル半径として知られる。C*代数や代数的量子力学の文脈では、固定された と代数上で動く に対するレイリー商 を、 の代数上のベクトル状態 と見なすことがある。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー商 · 続きを見る »

レイリー男爵

レイリー男爵(Baron Rayleigh)は、連合王国貴族の男爵位。 が1821年に叙されたのに始まる。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー男爵 · 続きを見る »

レイリー散乱

レイリー散乱(レイリーさんらん、Rayleigh scattering)とは、光の波長よりも小さいサイズの粒子による光の散乱である。透明な液体や固体中でも起きるが、典型的な現象は気体中の散乱であり、太陽光が大気で散乱されることによって、空が青く見えるというものである。レイリー散乱という名は、この現象の説明を試みたレイリー卿にちなんで名付けられた。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー散乱 · 続きを見る »

レイリー数

流体力学の分野でレイリー数は流体中での伝熱に関係する無次元量である。熱は、レイリー数がある限界値(臨界レイリー数)以下では主に熱伝導によって伝達され、限界値以上では主に対流によって伝達される。レイリー数はグラスホフ数とプラントル数の積である。 ここで、.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とレイリー数 · 続きを見る »

ロイヤル・メダル

ョージ4世が1826年にこの賞を創設した。 ロイヤル・メダル(Royal Medal)は、王立協会が毎年イギリス連邦内で「自然界についての知識の発展に最も重要な貢献をした」2人の人物と「応用科学の分野で顕著な貢献をした」1人の人物に与える賞で、金メッキされた銀メダルが授与される。1826年、ジョージ4世が創設した。当初は毎年2つのメダルを、前年に重要な発見をした者に与えていた。その後対象期間が5年間に伸び、さらに3年間に短縮された。形式はウィリアム4世とヴィクトリア女王が受け継ぎ、特にヴィクトリア女王は1837年に条件を変更したため、数学も3年おきに選考対象とされるようになった。1850年に再び条件が変更され、イギリス連邦内で10年前から1年前までの間に発表された自然科学への重要な貢献2件を表彰することになった。 1965年、現在の形式となり、王立協会の推薦に基づいてイギリス王室が3つのメダルを毎年授与するようになった。自然科学全般を対象とするため、選考委員会は生物学関連部門と物理学関連部門に分かれている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とロイヤル・メダル · 続きを見る »

ヴィルヘルム・ヴィーン

ヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン(独: Wilhelm Carl Werner Otto Fritz Franz Wien、1864年1月13日 - 1928年8月30日)は、ドイツの物理学者。英語風にウィルヘルム・ウィーンと表記されることもある。熱力学、特に黒体放射に関する研究で知られる。ヴィーンが発見したヴィーンの変位則やヴィーンの放射法則はマックス・プランクの量子論に直接結びつくもので、後にマックス・フォン・ラウエをして「ヴィーンの不滅の栄光は我々を量子力学の玄関口に導いた」と言わしめた。 1911年、「熱放射の諸法則に関する発見」によりノーベル物理学賞を受賞した。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とヴィルヘルム・ヴィーン · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とボルト (単位) · 続きを見る »

トリニティ・カレッジ (ケンブリッジ大学)

トリニティ・カレッジ (Trinity College) は、ケンブリッジ大学を構成するカレッジの一つ。ヘンリー8世によって1546年に創設された。2008年現在32人のノーベル賞受賞者や、フィールズ賞受賞者、アイザック・ニュートンなど数多くの著名人を輩出しているカレッジである。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とトリニティ・カレッジ (ケンブリッジ大学) · 続きを見る »

ヘルマン・フォン・ヘルムホルツ

ヘルマン・ルートヴィヒ・フェルディナント・フォン・ヘルムホルツ(Hermann Ludwig Ferdinand von Helmholtz, 1821年8月31日 - 1894年9月8日)はドイツ出身の生理学者、物理学者。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とヘルマン・フォン・ヘルムホルツ · 続きを見る »

分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と分光器 · 続きを見る »

分解能

分解能(ぶんかいのう、Optical resolution)は、装置などで対象を測定または識別できる能力。顕微鏡、望遠鏡、回折格子などにおける能力の指標のひとつである。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と分解能 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とアルゴン · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とアンペア · 続きを見る »

アンモニア

アンモニア (ammonia) は分子式が NH_3 で表される無機化合物。常温常圧では無色の気体で、特有の強い刺激臭を持つ。 水に良く溶けるため、水溶液(アンモニア水)として使用されることも多く、化学工業では基礎的な窒素源として重要である。また生体において有毒であるため、重要視される物質である。塩基の程度は水酸化ナトリウムより弱い。 窒素原子上の孤立電子対のはたらきにより、金属錯体の配位子となり、その場合はアンミンと呼ばれる。 名称の由来は、古代エジプトのアモン神殿の近くからアンモニウム塩が産出した事による。ラテン語の sol ammoniacum(アモンの塩)を語源とする。「アモンの塩」が意味する化合物は食塩と尿から合成されていた塩化アンモニウムである。アンモニアを初めて合成したのはジョゼフ・プリーストリー(1774年)である。 共役酸 (NH4+) はアンモニウムイオン、共役塩基 (NH2-) はアミドイオンである。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とアンモニア · 続きを見る »

アーサー・バルフォア

初代バルフォア伯爵アーサー・ジェイムズ・バルフォア(Arthur James Balfour, 1st Earl of Balfour, 、1848年7月25日 - 1930年3月19日)は、イギリスの政治家、哲学者、貴族。 ソールズベリー侯爵引退後の保守党を指導し、1902年から1905年まで首相を務めた。政権交代後も自由党の長期政権下で6年ほど野党保守党の党首を務めたが、1911年には党首の座をアンドルー・ボナー・ローに譲る。 第一次世界大戦中に成立した自由党・保守党大連立の挙国一致内閣ではや外務大臣などを歴任し、バルフォア報告書やバルフォア宣言に名を残す。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とアーサー・バルフォア · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とイギリス · 続きを見る »

イギリス国立物理学研究所

イギリス国立物理学研究所(イギリスこくりつぶつりがくけんきゅうしょ、、略称: )は、イギリスの国立の計量標準研究所であり、ロンドン、のにある。イギリス最大の応用物理学の研究機関である。運営は政府の委託を受けたSercoが行っている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とイギリス国立物理学研究所 · 続きを見る »

ウィリアム・ラムゼー

バニティ・フェア』誌に掲載されたラムゼーの漫画風イラスト ウィリアム・ラムゼー(William Ramsay, 1852年10月2日 – 1916年7月23日)はスコットランド出身の化学者である。1904年に空気中の希ガスの発見によりノーベル化学賞を受賞した。なお、同年のノーベル物理学賞は希ガスであるアルゴンを発見した功績によりレイリー卿が受賞している。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とウィリアム・ラムゼー · 続きを見る »

ウィリアム・プラウト

ウィリアム・プラウト(William Prout、1785年1月15日 - 1850年4月9日)はイギリスの化学者、医師である。「水素の原子量を1とすると,すべての原子の原子量はその整数倍であり,水素原子が他のすべての原子の構成単位である」という「プラウトの仮説」を提案したことで知られる。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とウィリアム・プラウト · 続きを見る »

エーテル (物理)

ーテル は、主に19世紀までの物理学で、光が伝播するために必要だと思われた媒質を表す術語である。現代では特殊相対性理論などの理論がエーテルの概念を用いずに確立されており、エーテルは廃れた物理学理論の一部であると考えられている。 このエーテルの語源はギリシア語のアイテール であり、ラテン語を経由して英語になった。アイテールの原義は「燃やす」または「輝く」であり、古代ギリシア以来、天空を満たす物質を指して用いられた。英語ではイーサーのように読まれる。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とエーテル (物理) · 続きを見る »

エドワード・ラウス

ドワード・ラウス(Edward Routh、1831年1月20日 - 1907年6月7日)は、イギリスの数学者。英領カナダケベック・シティー出身。 ケンブリッジ大学において数学の最盛期であった19世紀中期のトライポス(優等卒業試験)対策講師として有名で、1位となった生徒は計27名と、ケンブリッジの歴史でも突出した結果を残した(著:足立修一、管野 政明)。 彼はまた、力学での数学理論による体系化に関する功績や、近代的な制御理論の発展に重要な理論を数多く残した。制御理論におけるラウス・フルビッツの安定判別法などが有名である.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とエドワード・ラウス · 続きを見る »

エアロゾル

アロゾル (aerosol) とは、化学上は、分散相が固体または液体またはその両方であり、連続相が気体(通常は空気)であるゾルであると定義されている。一方、化学品の分類および表示に関する世界調和システムGHSでは、Aerosols (エアゾールと表記される)の定義はエアゾール噴霧器(中身を含めていう)のことである。 この記事では化学上の"エアロゾル"を扱う。 分散媒が気体の分散系、つまり、気体の中に微粒子が多数浮かんだ物質である。気中分散粒子系、煙霧体ともいう。エアロゾル中の微粒子(あるいはエアロゾルの別名)を煙霧質(えんむしつ)または気膠質という。なお俗に、微粒子のことをエアロゾルと呼ぶことがあるが間違いである。 ゾルとは分散媒が液体のコロイドのことであり、エアロゾルはそれにエアロ(空気)を付けた言葉である。ただし、分散媒は空気に限らずさまざまな気体があり、たとえばスプレーによるエアロゾルの分散媒はプロパンなどである。また、コロイド(粒子が約100nm以下)に限らず、より大きい粒子のものもある。 微粒子のサイズは、10nm程度から1mm程度までさまざまである。ある程度大きなもの(定義はさまざまだが、1µm~、0.2~10µm など)を塵埃(じんあい)という。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とエアロゾル · 続きを見る »

エジプト

プト・アラブ共和国(エジプト・アラブきょうわこく、جمهورية مصر العربية)、通称エジプトは、中東・アフリカの共和国。首都はカイロ。 西にリビア、南にスーダン、北東にイスラエルと隣接し、北は地中海、東は紅海に面している。南北に流れるナイル川の河谷とデルタ地帯(ナイル・デルタ)のほかは、国土の大部分が砂漠である。ナイル河口の東に地中海と紅海を結ぶスエズ運河がある。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とエジプト · 続きを見る »

エセックス

ックス(Essex)はイングランド東部のカウンティ。州庁所在地はチェルムズフォード。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とエセックス · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とオーム · 続きを見る »

カントリー・ハウス

イギリスのカントリー・ハウス (English country house) とはブリテン島の農村において貴族およびジェントリの住居として建設された邸宅をさす。多くのカントリー・ハウスは16世紀から1914年までの期間に建設されており、二度の世界大戦による荒廃の危機を乗り越えた邸宅が現在1500から2000棟あまり残存し一般に公開されている。「カントリー・シート (country seat)」、「グレイト・ハウス (great house)」「ステイトリー・ホーム」(後述)などとも呼称される。 ヘンリ・ホランドの設計に基づいた大規模な改修が施され現在の姿となった。ベッドフォード公爵が現在も所有している。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とカントリー・ハウス · 続きを見る »

キャヴェンディッシュ研究所

ャヴェンディッシュ研究所(キャヴェンディッシュけんきゅうじょ、Cavendish Laboratory)は、ケンブリッジ大学に所属するイギリスの物理学研究所および教育機関。核物理学のメッカとも呼ばれる。 1871年に物理学者ヘンリー・キャヴェンディッシュを記念して作られた。 初代所長はマクスウェル。その後、レイリー卿、J.J.トムソン、ラザフォード、W. L. ブラッグらが所長をつとめた。 2012年までに29人のノーベル賞受賞者を輩出している。 キャヴェンディシュ研究所は分子生物学の進歩にも貢献している。キャヴェンディッシュ研究所でたんぱく質の構造を研究していたクリックは1953年にDNAの二重螺旋構造をつきとめ、ワトソンらとともにノーベル生理学・医学賞を受賞した。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とキャヴェンディッシュ研究所 · 続きを見る »

ケンブリッジ大学

ンブリッジ大学(University of Cambridge)は、イギリスの大学都市ケンブリッジに所在する総合大学であり、イギリス伝統のカレッジ制を特徴とする世界屈指の名門大学である。中世に創設されて以来、英語圏ではオックスフォード大学に次ぐ古い歴史をもっており、アンシャン・ユニヴァシティーに属する。 ハーバード大学、シカゴ大学、オックスフォード大学等と並び、各種の世界大学ランキングで常にトップレベルの優秀な大学として評価されており、公式のノーベル賞受賞者は96人(2016年12月現在)と、世界の大学・研究機関で最多(内、卒業生の受賞者は65人)。総長はで、副総長は。 公式サイトでは国公立大学(Public University)と紹介している。法的根拠が国王の勅許状により設立された自治団体であること、大学財政審議会(UFC)を通じて国家から国庫補助金の配分を受けており、大学規模や文科・理科の配分比率がUFCにより決定されていること、法的性質が明らかに違うバッキンガム大学等の私立大学が近年新設されたことによる。ただし、自然発生的な創立の歴史や高度な大学自治、独自の財産と安定収入のあるカレッジの存在、日本でいう国公立大学とは解釈が異なる。 アメリカ、ヨーロッパ、アジア、アフリカ各国からの留学生も多い。2005年現在、EU外からの学生は3,000人を超え、日本からの留学生も毎年十数人~数十人規模となっている。研究者の交流も盛んで、日本からの在外訪問研究者も多い。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とケンブリッジ大学 · 続きを見る »

コプリ・メダル

プリ・メダル()は 科学業績に対して贈られる最も歴史の古い賞である。イギリス王立協会によって1731年に創立され、毎年贈られている。 裕福な地主で1761年に王立協会のメンバーになったゴッドフリー・コプリ卿の基金をもとに設立された。物理学、生物学の分野の研究者に贈られ、受賞者は協会のフェローあるいは外国人会員に選出される。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とコプリ・メダル · 続きを見る »

ジャガディッシュ・チャンドラ・ボース

ャガディッシュ・チャンドラ・ボース(英語:Sir Jagadish Chandra Bose 、ベンガル語:স্যার জগদীশ চন্দ্র বসু 、1858年11月30日 - 1937年11月23日)はインドの物理学者、SF作家である。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジャガディッシュ・チャンドラ・ボース · 続きを見る »

ジョン・ティンダル

ョン・ティンダル(John Tyndall、1820年8月2日 - 1893年12月4日)は、アイルランド出身の物理学者、登山家である。 物理学者として一般に知られる業績としては、チンダル現象を発見したことである。その他にも、赤外線放射(温室効果)、反磁性体、に関して突出した業績を残した。 登山家としてはアルプス山脈5番目の最高峰ヴァイスホルンの初登頂に成功した(1861年8月19日)。また、マッターホルンの初登頂を競い、1862年に山頂から標高230m下の肩にまで達した(エドワード・ウィンパーが1865年に初登頂した)。1868年にはマッターホルンの初縦走に成功している。なお、登山の元々の目的は物理学者としてアルプスの氷河を研究することであった。 1852年王立協会フェロー選出、同協会から1853年ロイヤル・メダル、1864年ランフォード・メダル受賞。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジョン・ティンダル · 続きを見る »

ジョージ・ガブリエル・ストークス

初代准男爵、サー・ジョージ・ガブリエル・ストークス(Sir George Gabriel Stokes, 1st Baronet, 1819年8月13日 - 1903年2月1日)は、アイルランドの数学者、物理学者である。 流体力学、光学、数学などの分野で重要な貢献をした。1851年に王立協会のフェローに選出され、1885年から1890年まで会長を務めた。1849年から死去する1903年まで、ルーカス教授職も務めている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジョージ・ガブリエル・ストークス · 続きを見る »

ジョゼフ・ジョン・トムソン

ー・ジョゼフ・ジョン・トムソン(Sir Joseph John Thomson, 1856年12月18日-1940年8月30日)は、イギリスの物理学者。しばしばJ.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジョゼフ・ジョン・トムソン · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジェームズ・クラーク・マクスウェル · 続きを見る »

ジェームズ・ジーンズ

ェームズ・ジーンズ ジェームズ・ホップウッド・ジーンズ(Sir James Hopwood Jeans 、1877年9月11日 - 1946年9月16日)は、イギリスの物理学者、天文学者、数学者である。黒体輻射に関するレイリー・ジーンズの法則、惑星の起源に関する潮汐起源説などで知られる。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)とジェームズ・ジーンズ · 続きを見る »

共鳴

共鳴(きょうめい、)とは、物理的な系がある特定の周期で働きかけを受けた場合に、その系がある特徴的な振る舞いを見せる現象をいう。特定の周期は対象とする系ごとに異なり、その逆数を固有振動数とよぶ。 物理現象としての共鳴・共振は、主に の訳語であり、物理学では「共鳴」、電気を始め工学的分野では「共振」ということが多い。 共鳴が知られることになった始原は音を伴う振動現象であると言われるが、現在では、理論式の上で等価・類似の現象も広く共鳴と呼ばれる(バネの振動・電気回路・核磁気共鳴など)。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と共鳴 · 続きを見る »

回折格子

実験用の超大型回折格子 回折格子(かいせつこうし)とは、格子状のパターンによる回折を利用して干渉縞を作るために使用される光学素子の総称。グレーティング()とも呼ばれる。格子パターンは直線状の凹凸がマイクロメートルサイズの周期で平行に並んで構成されていることが多い。ただしその周期、材質やパターン厚(凹凸の差厚)などは用途や使用する波長域によって適宜異なる。主に物理・化学分野で分光素子として用いられるものの用途は一概には言えない。 回折格子による干渉縞が見られる身近な例としては、CDが挙げられる。(後述)(ただしCDは、構造的に回折格子になっているものの、回折を利用しているわけではない) チャンドラのスペクトロメーターに使用された回折格子.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と回折格子 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と王立協会 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と窒素 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と物理学者 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と相対性理論 · 続きを見る »

青空文庫

青空文庫(あおぞらぶんこ)は、著作権が消滅した作品や著者が許諾した作品のテキストを公開しているインターネット上の電子図書館である。富田倫生、野口英司、八巻美恵、らんむろ・さてぃの4人が呼びかけ人となって発足した。日本で著作権切れ作品をオンライン公開する動きの先駆者。2017年の年間アクセス数の合計は920万件以上。 収録作品はボランティアの手によりJIS X 0208漢字の範囲で青空文庫形式テキストファイルやHTMLとして電子化されている。また、「青空文庫収録ファイルの取り扱い規準」に従い自由に利用出来るため、その収録作品はパーソナルコンピュータのみならずPDAや携帯電話などの環境でも利用されている。テキストファイルである事から、大きな文字で印刷したり、テキストを読み上げるソフトウェアと組み合わせるなど、視覚障害者向けとしても利用が期待されている。 青空文庫として閲覧ソフトウェアを開発したり提供したりはしていないが、電子辞書やiPhoneアプリなどで専用ビューアーがサードパーティによって開発されている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と青空文庫 · 続きを見る »

表面弾性波

表面弾性波(ひょうめんだんせいは、surface acoustic wave、SAW)は、物体表面に集中して伝播する振動(弾性波)。 イギリスの物理学者、ジョン・ウィリアム・ストラット(レイリー卿)により発見された。しばしば弾性表面波とも呼ばれる。 圧電体上の表面弾性波を用いて、変圧器やフィルタなどを実現できる。タッチパネルなどにも応用されている。 表面弾性波を用いたフィルタは小型で価格が安いため、従来のコイルやコンデンサを用いたフィルタとの置き換えが進んでいる。ただし、損失は大きい。 携帯電話などのフィルタには表面弾性波フィルタが使われている。RFフィルタやデュプレクサの置換え用途としては、共振器型と呼ばれる物が使われ、こちらは挿入損失は小さい。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と表面弾性波 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と黒体 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と黒体放射 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と量子論 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と酸素 · 続きを見る »

標準化

標準化(ひょうじゅんか、英語:standardization(スタンダーダイゼーション))という用語は、文脈によって様々な意味を持つ。「標準(standard)」という用語には、相互運用のための広く合意されたガイドラインという意味が含まれ、「標準化」はそのような標準を確立する過程を指すのが一般的である。 社会科学や経済学では、「標準化」の考え方は協調ゲームの解法と近い。それぞれの利害関係者がそれぞれに何らかの利益を得つつ、全体として一貫した決定に到達する。「標準化」は、よりよい選択をし、その選択結果を標準として批准する過程である。 なお、JISにおける「標準」の定義は次のとおりである。 「関係する人々の間で利益又は利便が公正に得られるように、統一し、単純化を図る目的で、もの(生産活動の産出物)及びもの以外(組織、責任権限、システム、方法など)について定めた取決め。 」 (JIS Z 8002:2006).

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と標準化 · 続きを見る »

毛細管現象

毛細管現象(もうさいかんげんしょう、capillary action)とは、細い管状物体(毛細管)の内側の液体が管の中を上昇(場合によっては下降)する物理現象である。毛管現象とも呼ばれる。 例えば、現象として壁面のぬれやすさとの兼ね合いで管内の液面は水平ではなく、傾きをもっていることがある(ストローの中の液面を見れば、両端が壁面にそって高くなっている様子がわかる)。また、ガラス管では濡れ性の高い水の場合毛細管の液面は上昇するが、ガラスによってはじかれる、水銀の場合は毛細管の液面は下降する。 表面張力・壁面のぬれやすさ・液体の密度によって液体上昇の高さが決まる。 表面張力を測定する方法の一つとなっている。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と毛細管現象 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と流体力学 · 続きを見る »

散乱

散乱(さんらん、)とは、光などの波や粒子がターゲットと衝突あるいは相互作用して方向を変えられること。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と散乱 · 続きを見る »

11月12日

11月12日(じゅういちがつじゅうににち)は、グレゴリオ暦で年始から316日目(閏年では317日目)にあたり、年末まであと49日ある。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と11月12日 · 続きを見る »

1842年

記載なし。

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と1842年 · 続きを見る »

1904年

記載なし。

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と1904年 · 続きを見る »

1919年

記載なし。

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と1919年 · 続きを見る »

6月30日

6月30日(ろくがつさんじゅうにち)はグレゴリオ暦で年始から181日目(閏年では182日目)にあたり、年末まであと184日ある。6月の最終日である。誕生花はビヨウヤナギ、ヘリオトロープ。.

新しい!!: ジョン・ウィリアム・ストラット (第3代レイリー男爵)と6月30日 · 続きを見る »

ここにリダイレクトされます:

John William Strutt, 3rd Baron Rayleighジョン・レイリージョン・ウィリアム・ストラット

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »