ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ネイピア数

索引 ネイピア数

1.

43 関係: 坂本實実数対数不定積分常用対数循環定義微分微分方程式ネイピア数の無理性の証明ネイピア数の表現ヤコブ・ベルヌーイテイラー展開フランスイタリック体ウィリアム・オートレッドオイラーの定数オイラーの公式オイラーの等式オイラー数クリスティアーン・ホイヘンスゴットフリート・ライプニッツシャルル・エルミートジョン・ネイピア冪乗円周率国際標準化機構立体活字E複素数解析接続超越数自然対数自然数連分数Wolfram Alpha指数表記指数関数斜体日本工業規格日本物理学会数学定数101618年

坂本實

坂本 實(さかもと みのる、1936年 - )は、専修大学教授として33年奉職し、情報科学研究所所長坂本實、「情報科学研究所発足のころ-情報科学研究所と私-」、情報科学研究(専修大学情報科学研究所年報)、No.27,pp.1-14,2006年大曾根匡、綿貫理明、「情報科学研究所設立30周年記念座談会の記録-情報科学研究所の期限と発展-」、情報科学研究(専修大学情報科学研究所年報)、No.31,pp.1-23,2010年、情報科学研究センター長、経営学部長、ネットワーク情報学部長、理事、評議員などの要職を歴任した。専門分野は、オペレーションズ・リサーチ、最適制御理論、数学モデル、経営情報学などである。.

新しい!!: ネイピア数と坂本實 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: ネイピア数と実数 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: ネイピア数と対数 · 続きを見る »

不定積分

関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。 (逆微分) 0) 微分の逆操作を意味する:すなわち、与えられた関数が連続関数であるとき、微分するとその関数に一致するような新たな関数(原始関数)を求める操作のこと、およびその原始関数の全体(集合)を 逆微分としての不定積分(antiderivative)と言う。 (積分論) 1) 一変数関数 に対して、定義域内の任意の閉区間 上の定積分が に一致する関数 を関数 の 不定積分 (indefinite integral) と言う。 (積分論) 2) 一変数関数の定義域内の定数 から変数 までの(端点が定数でない)積分で与えられる関数を関数 の を基点とする不定積分 (indefinite integral with base point) と言う。 (積分論) 3) ルベーグ積分論において定義域内の可測集合を変数とし、変数としての集合上での積分を値とする集合関数を関数 の 集合関数としての不定積分 (indefinite integral as a set-function) と言う。 海外の数学サイトでは wikipedia を含めて主として上記の (逆微分) 0) を記述している場合が多いが、岩波書店の数学辞典や積分論の現代的な専門書では上記の (積分論) での不定積分が記述されている。ただしこれらはそれぞれ無関係ではなく、後述するように、例えば (積分論) 1) は (積分論) 3) を数直線上で考えたものであって (逆微分) 0) と同等となるべきものであり、(積分論) 2) は本質的には (積分論) 1) や (積分論) 3) の一部分と見なすことができる。また (積分論) 2) から (逆微分) 0) を得ることもできるが、この対応は一般には全射でも単射でもない。これ以後、この項目で考える積分は、特に指定がない限り、リーマン積分であるものとする。 また後述するように、(積分論) の意味の不定積分を連続でない関数へ一般化すると、不定積分は通常の意味での原始関数となるとは限らなくなり、(初等数学) と一致しなくなるのだが、連続関数に対してはほぼ一致する概念であるため、しばしば混同して用いられる。.

新しい!!: ネイピア数と不定積分 · 続きを見る »

常用対数

常用対数(じょうようたいすう、common logarithm)は 10 を底とする対数のことである。数の表記で通常用いられる十進法表示と親和する。レベル表現の「ベル」などに使われている。.

新しい!!: ネイピア数と常用対数 · 続きを見る »

循環定義

循環定義(じゅんかんていぎ、Circular definition)は、ある概念を定義するためにその概念自体を用いることである。この場合、定義文のみの知識では定義した概念の本質的な理解が出来ないため、定義は成立しない。.

新しい!!: ネイピア数と循環定義 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: ネイピア数と微分 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: ネイピア数と微分方程式 · 続きを見る »

ネイピア数の無理性の証明

ネイピア数の無理性の証明(ねいぴあすうのむりせいのしょうめい)は、1744年にオイラーが初めて行った。実際、ネイピア数 は を満たす無理数である。証明は背理法による。すなわち、 が有理数であると仮定して矛盾を導く。 が無理数であることの証明は、π が無理数であることの証明よりずっと易しい。 の無理性が初めて示されたのは1761年のことである。 を底とする指数関数 は以下のようにテイラー展開される。 を代入すると 以下、これを の定義として無理数であることを証明する。.

新しい!!: ネイピア数とネイピア数の無理性の証明 · 続きを見る »

ネイピア数の表現

ネイピア数 の表現には様々な方法がある。本稿では代表的なネイピア数の定義とそれに基づくネイピア数の表現についてを述べる。以下では特に断りがない限り、 をネイピア数の意味で用いる。 は数学定数の一つであり、しばしば自然対数の底として現れる実数である。 は無理数であるため(ネイピア数の無理性の証明参照)通常の分数では表現できないが、無限連分数によれば表現可能である。さらに解析学的手法を用いることにより、 は級数、無限乗積、あるいはある種の数列の極限として表現することが可能である。.

新しい!!: ネイピア数とネイピア数の表現 · 続きを見る »

ヤコブ・ベルヌーイ

ヤコブ・ベルヌーイ(Jakob Bernoulli、1654年12月27日 - 1705年8月16日)は、ヤコブ、ジャック、あるいはジェームス・ベルヌーイとしても知られるスイスの数学者・科学者。ベルヌーイ家の中でも最も卓越した数学者の一人であり、ヨハン・ベルヌーイの兄である。スイスのバーゼルの生まれ。 ヤコブ・ベルヌーイは、1676年に英国に旅した折にロバート・ボイルとロバート・フックに会い、その後、科学と数学の研究に一生を捧げることになった。1682年からはバーゼル大学で教鞭をとり、1687年には同大学の数学の教授に就任する。 彼は、ゴットフリート・ライプニッツと交流をもちライプニッツから微積分を学び、弟のヨハンとも共同研究を行う。 彼の初期の業績である超越曲線(1696)とisoperimetry (1700, 1701)はこの共同作業がもたらした成果である。対数螺旋の伸開線および縮閉線は自分自身に一致することを示した。 Ars Conjectandi, Opus Posthumum (推測法、1713)は、彼の確率論の偉大な貢献である。ベルヌーイ試行とベルヌーイ数はこの著作から、彼の功績を記念して名づけられた。.

新しい!!: ネイピア数とヤコブ・ベルヌーイ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: ネイピア数とテイラー展開 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: ネイピア数とフランス · 続きを見る »

イタリック体

立体を用いている。 イタリック体(イタリックたい、英: italic type)とはアルファベットの書体の一つである。特に小文字において、筆記体 (cursive)に似た装飾が特徴である。ほとんどの場合上部が右に傾いているので、しばしば斜体と混同ないし同一視される。(実際は両者は異なる概念。#字形を参照。) 元々は15世紀のイタリア・ヴェネツィアで聖書の紙面スペースを節約するために考案されたのが「イタリック」の由来である。したがって、当初は手書き(筆記体)の本文用書体であった。16世紀に金属活字となって普及したが、17世紀以降は本文はもっぱら立体(正立した書体)を用いることが一般的になり、現在では立体などと共にフォントの属性を成し、文章の中で語を強調したり周囲と区別したりするなどの補助的な用途に用いられることが多い、及び外国単語(片仮名と同様)。.

新しい!!: ネイピア数とイタリック体 · 続きを見る »

ウィリアム・オートレッド

ウィリアム・オートレッド(William Oughtred、1574年3月5日 - 1660年6月30日)は、イギリスの数学者。 ジョン・ネイピアが対数を発明し、エドマンド・ガンターが対数尺を発明した後、オートレッドが2つの対数尺を組み合わせることで乗法と除法を直接計算できる計算尺を1622年に発明した。また、乗法の記号である "×" や、三角関数を "sin" や "cos" と表記する方法もオートレッドの考案である。.

新しい!!: ネイピア数とウィリアム・オートレッド · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: ネイピア数とオイラーの定数 · 続きを見る »

オイラーの公式

数学、特に複素解析におけるオイラーの公式(オイラーのこうしき、Euler's formula)は、指数関数と三角関数の間に成り立つ以下の関係をいう。 ここで は指数関数、 は虚数単位、 はそれぞれ余弦関数および正弦関数である指数関数 は累乗を拡張したもので、複素数 について という関係が成り立つ。 は自然対数の底あるいはネイピア数と呼ばれる。虚数単位 は を満たす複素数である。余弦関数 および正弦関数 は三角関数の一種である。正弦関数 は、直角三角形の斜辺とその三角形の変数 に対応する角度を持つ鋭角の対辺(正弦)の長さの比を表す。余弦関数 はもう一方の鋭角(余角)の対辺と斜辺の長さの比を表す。単位円(半径の長さを 1 とする円)の中心を原点とする直交座標系をとったとき、単位円上の点を表す 座標はそれぞれ に等しい( は円の中心と円周上の点を結ぶ直線と、 軸のなす角の大きさに対応する)。文献によっては、指数関数は、(指数)から3字取って と表される。また虚数単位には でなく を用いることがある。。任意の複素数 に対して成り立つ等式であるが、特に が実数である場合が重要でありよく使われる。 が実数のとき、 は複素数 がなす複素平面上の偏角(角度 の単位はラジアン)に対応する。 公式の名前は18世紀の数学者レオンハルト・オイラー (Leonhard Euler) に因むが、最初の発見者はロジャー・コーツ (Roger Cotes) とされる。コーツは1714年に を発見したが、三角関数の周期性による対数関数の多価性を見逃した。 1740年頃オイラーはこの対数関数の形での公式から現在オイラーの公式の名で呼ばれる指数関数での形に注意を向けた。指数関数と三角関数の級数展開を比較することによる証明が得られ出版されたのは1748年のことだった。 この公式は複素解析をはじめとする純粋数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要な役割を演じる。物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 オイラーの公式は、変数 が実数である場合には、右辺は実空間上で定義される通常の三角関数で表され、虚数の指数関数の実部と虚部がそれぞれ角度 に対応する余弦関数 と正弦関数 に等しいことを表す。このとき、偏角 をパラメータとする曲線 は、複素平面上の単位円をなす。 特に、 のとき(すなわち偏角が 180 度のとき)、 となる。この関係はオイラーの等式 と呼ばれる三角関数の周期性(従って複素指数関数の周期性)により、オイラーの等式が成り立つのは に限らない。すなわち、任意の整数 について は を満たす。。 が純虚数である場合には、左辺は実空間上で定義される通常の指数関数であり、右辺は純虚数に対する三角関数となる。 オイラーの公式は、三角関数 が双曲線関数 に対応することを導く。また応用上は、オイラーの公式を経由して三角関数を複素指数関数に置き換えることで、微分方程式やフーリエ級数などの扱いを簡単にすることなどに利用される。.

新しい!!: ネイピア数とオイラーの公式 · 続きを見る »

オイラーの等式

イラーの等式(オイラーのとうしき、Euler's identity)とは、解析学における等式 であり、その名はレオンハルト・オイラーに因む。ここに、 である。.

新しい!!: ネイピア数とオイラーの等式 · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: ネイピア数とオイラー数 · 続きを見る »

クリスティアーン・ホイヘンス

リスティアーン・ホイヘンス(Christiaan Huygens 、1629年『天文アマチュアのための望遠鏡光学・屈折編』pp.14-15「ハイゲンス兄弟の望遠鏡」。4月14日 - 1695年7月8日)() は、オランダの数学者、物理学者、天文学者。かつてオランダの25ギルダー紙幣にその肖像が描かれていた。.

新しい!!: ネイピア数とクリスティアーン・ホイヘンス · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: ネイピア数とゴットフリート・ライプニッツ · 続きを見る »

シャルル・エルミート

ャルル・エルミート(Charles Hermite、1822年12月24日-1901年1月14日)は、フランスの数学者。1869年からエコール・ポリテクニークの教授、1876年からソルボンヌ大学の教授を務めた。 エルミートは、エルミート内積、エルミート行列やエルミート作用素(エルミート演算子)、エルミート多項式などにその名を残している。また、オイラー、ラグランジュ、アーベル、ガロア等、数多くの偉大な数学者が挑んだ五次方程式の解法を見つけるという難問に挑み、1858年に楕円関数を用いて、初めて一般的な五次方程式を解くことに成功した。1873年にネイピア数 が超越数であることを証明したことでも知られる。この結果を引き継いで、1882年にフェルディナント・フォン・リンデマンにより円周率 が超越数であることが証明され、円積問題が否定的に解決された(エルミート.

新しい!!: ネイピア数とシャルル・エルミート · 続きを見る »

ジョン・ネイピア

ョン・ネイピア(John Napier, 1550年 - 1617年4月4日)はスコットランドのバロン。数学者、物理学者、天文学者、占星術師としても知られる。.

新しい!!: ネイピア数とジョン・ネイピア · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: ネイピア数と冪乗 · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: ネイピア数と円周率 · 続きを見る »

国際標準化機構

国際標準化機構(こくさいひょうじゅんかきこう、International Organization for Standardization)、略称 ISO(アイエスオー、イソ、アイソ)は、各国の国家標準化団体で構成される非政府組織である。 スイス・ジュネーヴに本部を置く、スイス民法による非営利法人である。1947年2月23日に設立された。国際的な標準である国際規格(IS: international standard)を策定している。 国際連合経済社会理事会に総合協議資格(general consultative status)を有する機関に認定された最初の組織の1つである。.

新しい!!: ネイピア数と国際標準化機構 · 続きを見る »

立体活字

立体活字、立体(りったいかつじ、upright type)とは、傾かずに垂直に正立した書体のことを指す。正体などとも呼ばれる。傾いた書体であるイタリック体および斜体と対比される。 ローマン体(=セリフを持つ書体)と名称が混同されることも多い。.

新しい!!: ネイピア数と立体活字 · 続きを見る »

E

Eは、ラテン文字(アルファベット)の5番目の文字。小文字は e 。ギリシャ文字のΕ(エプシロン)に由来し、キリル文字のЕに相当する。.

新しい!!: ネイピア数とE · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ネイピア数と複素数 · 続きを見る »

解析接続

解析学において、解析接続 (かいせきせつぞく、analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。.

新しい!!: ネイピア数と解析接続 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: ネイピア数と超越数 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: ネイピア数と自然対数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: ネイピア数と自然数 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: ネイピア数と連分数 · 続きを見る »

Wolfram Alpha

Wolfram Alpha(WolframAlphaともWolfram|Alphaとも表記される)はウルフラム・リサーチが開発した質問応答システム。事実についての質問に対して、構造化されたデータを使って計算し、直接答えを返すオンラインサービスである。他の検索エンジンのように、答えを含んでいる可能性のあるドキュメントやウェブページのリストを返すわけではない。このサービスは2009年3月に英国人科学者スティーブン・ウルフラムが発表し、同年5月15日に公開された。また、2018年6月18日には日本語版のWolfram Alphaも公開された。現時点では日本語に対応しているのは数学関連のクエリのみであるが、「5個のボールの並べ方は何通りあるか」「ニュートン法を使ってx cos x.

新しい!!: ネイピア数とWolfram Alpha · 続きを見る »

指数表記

指数表記(しすうひょうき、exponential notation, E notation, scientific notation)は、数の表記方法の1つである。主に非常に大きな、または非常に小さな数を表記する場合に使われる。.

新しい!!: ネイピア数と指数表記 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: ネイピア数と指数関数 · 続きを見る »

斜体

斜体(しゃたい、)とは書体の形態のひとつで、「傾いた書体」のこと。斜字体とも。通常、水平線は水平のまま、垂直線を右に倒すように傾けてデザインしたものである。立体活字(立体)(正立した書体)とは対照的な字体である。.

新しい!!: ネイピア数と斜体 · 続きを見る »

日本工業規格

鉱工業品用) 日本工業規格(にほんこうぎょうきかく、Japanese Industrial Standards)は、工業標準化法に基づき、日本工業標準調査会の答申を受けて、主務大臣が制定する工業標準であり、日本の国家標準の一つである。JIS(ジス)またはJIS規格(ジスきかく)と通称されている。JISのSは英語 Standards の頭文字であって規格を意味するので、「JIS規格」という表現は冗長であり、これを誤りとする人もある。ただし、この表現は、日本工業標準調査会、日本規格協会およびNHKのサイトでも一部用いられている。.

新しい!!: ネイピア数と日本工業規格 · 続きを見る »

日本物理学会

一般社団法人日本物理学会(いっぱんしゃだんほうじんにほんぶつりがっかい)は、1877年(明治10年)に創立された学会である。.

新しい!!: ネイピア数と日本物理学会 · 続きを見る »

数学定数

数学定数(すうがくていすう)とは、なんらかの"面白い"性質を持った定数である。 数学定数は、ふつうは実数体か複素数体の元である。数学定数と呼ばれうるものは、一つの変項を持ち、ZFC 集合論により証明可能な論理式により、それを満足するただ一つの数として決定可能 (definable) であり、ほとんどの場合はその値が計算可能 (computable) である。 変数を斜体で表すのに対し、定数であることを明示するために、立体を使うことがある。.

新しい!!: ネイピア数と数学定数 · 続きを見る »

10

十」の筆順 10(十、じゅう、とお)は、自然数または整数において、9 の次で 11 の前の数である。日本語の訓読みでは、十倍を意味する語尾を「そ」と読む(例:三十を「みそ」と読む)(但し、二十ははたちと読む。)。漢字の「十」は音読みを「ジッ」もしくは「ジュウ」と発音する(下記参照)。英語の序数詞では、10th、tenth となる。ラテン語では decem(デケム)。.

新しい!!: ネイピア数と10 · 続きを見る »

1618年

記載なし。

新しい!!: ネイピア数と1618年 · 続きを見る »

ここにリダイレクトされます:

ネーピアの数ネーピア数ネピア数自然対数の底自然対数底

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »