ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

スピン角運動量

索引 スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

85 関係: 原子原子核半整数単位行列古典力学同値類同値関係場の量子論多様体対称テンソル対称群対称操作岩波書店交換子交換関係 (量子力学)位相作用 (数学)作用素ハドロンユークリッド空間ユニタリ群ユニタリ表現ラジアンリー代数リー群レフ・ランダウヴォルフガング・パウリボース粒子プランク定数パウリ行列ヒルベルト空間ヒッグス粒子ディラック方程式フェルミ粒子エフゲニー・リフシッツオブザーバブルクロス積クォークシュテルン=ゲルラッハの実験ジョージ・ウーレンベックスピノールスピントロニクススピン群スピン軌道相互作用ゼーマン効果サミュエル・ゴーズミット内積商位相空間回転群回転行列...固有値球面座標系積の微分法則粒子素粒子環 (数学)物理学特殊ユニタリ群特殊相対性理論相対論的量子力学相対性理論随伴行列行列行列群複合粒子規格化角運動量転置行列軌道角運動量量子力学自乗可積分函数自転電子連結空間虚数単位Well-defined恒等写像桜井純標準模型正方行列歪エルミート行列波動関数準同型整数 インデックスを展開 (35 もっと) »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: スピン角運動量と原子 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: スピン角運動量と原子核 · 続きを見る »

半整数

半整数(はんせいすう、half-integer)とは有理数で、 を整数としたとき の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5、-\frac、4\frac などがある。 ごくまれに半奇整数 と呼ばれることもある。.

新しい!!: スピン角運動量と半整数 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: スピン角運動量と単位行列 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: スピン角運動量と古典力学 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: スピン角運動量と同値類 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: スピン角運動量と同値関係 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: スピン角運動量と場の量子論 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: スピン角運動量と多様体 · 続きを見る »

対称テンソル

数学における対称テンソル(たいしょうテンソル、symmetric tensor)は、その に関して、任意の -次置換の作用に関して不変なテンソルを言う。 より具体的には、テンソルを多重線型写像 と見るならば、その引数となるベクトルの任意の置換 について を満たすもの、あるいは座標を用いて成分で表すならば を満たすものである。 有限次元ベクトル空間 上の-次対称テンソル全体の成す空間は、 上の -次斉次多項式全体の成す空間の双対に自然同型になる。標数 の体上では、対称テンソル全体の成すは 上の対称代数に自然に同一視される。関連する概念として、反対称テンソルや交代形式がある。対称テンソルは工学、物理学、数学において広く生じる。.

新しい!!: スピン角運動量と対称テンソル · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: スピン角運動量と対称群 · 続きを見る »

対称操作

結晶学における対称操作とは、格子点を不変にする操作である。 対称操作には次のものがある。.

新しい!!: スピン角運動量と対称操作 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: スピン角運動量と岩波書店 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: スピン角運動量と交換子 · 続きを見る »

交換関係 (量子力学)

量子力学における交換関係(こうかんかんけい、commutation relation)とは、演算子としてあらわされた物理量が満たす量子力学特有の関係である。.

新しい!!: スピン角運動量と交換関係 (量子力学) · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: スピン角運動量と位相 · 続きを見る »

作用 (数学)

数学における作用(さよう、action, operation)は、代数系にその上の変換写像の集まりを代数的構造として考え合わせたもの。幾何学的には空間(俗な意味で言えば図形)の運動の様子とその原因となるものの構造を記述する概念である。 抽象群などの抽象的に与えられる代数的構造を、その作用を通して具体的な空間上の運動全体がつくる構造として表現することによって特徴付けるという手法に基づいて展開される数学の一分野は表現論と呼ばれる。.

新しい!!: スピン角運動量と作用 (数学) · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: スピン角運動量と作用素 · 続きを見る »

ハドロン

ハドロン (hadron) は、素粒子標準模型において強い相互作用で結びついた複合粒子のグループである。 強粒子とも訳されるが、現代では素粒子物理学者がこの和名で呼ぶことはほとんどない。 この名称は、ギリシャ語の「強い」の意のἁδρόςに由来し、1962年にレフ・オクンによって付けられた。.

新しい!!: スピン角運動量とハドロン · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: スピン角運動量とユークリッド空間 · 続きを見る »

ユニタリ群

n 次のユニタリ群(ユニタリぐん、unitary group) U(n) とは、n 次ユニタリ行列のなす群のことである。演算は行列の積で与えられる。 ユニタリ群は一般線型群の部分群である。.

新しい!!: スピン角運動量とユニタリ群 · 続きを見る »

ユニタリ表現

数学において、群 のユニタリ表現(unitary representation)とは、複素ヒルベルト空間 上の の線型表現 であって、 が任意の に対してユニタリ作用素となるようなものである。一般論は が局所コンパクト(ハウスドルフ)位相群であり表現がである場合にはよく発展している。 理論は1920年代から量子力学において広く応用されており、とくにヘルマン・ワイルの1928年の本 に影響を受けている。応用において有用な特定の群だけでなく任意の群 に対してユニタリ表現の一般論を構成したパイオニアの1人はであった。.

新しい!!: スピン角運動量とユニタリ表現 · 続きを見る »

ラジアン

ラジアン(radian、記号: rad)は、国際単位系 (SI) における角度(平面角)の単位である。円周上でその円の半径と同じ長さの弧を切り取る2本の半径が成す角の値と定義される。.

新しい!!: スピン角運動量とラジアン · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: スピン角運動量とリー代数 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: スピン角運動量とリー群 · 続きを見る »

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: スピン角運動量とレフ・ランダウ · 続きを見る »

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

新しい!!: スピン角運動量とヴォルフガング・パウリ · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: スピン角運動量とボース粒子 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: スピン角運動量とプランク定数 · 続きを見る »

パウリ行列

パウリ行列(パウリぎょうれつ, Pauli matrices)、パウリのスピン行列(パウリのスピンぎょうれつ, Pauli spin matrices)とは、下に挙げる3つの2×2複素行列の組みのことである猪木、河合(1994)、第7章J.J Sakurai and Jim Napolitano(2010), chapter 3。(シグマ)で表記されることが多い。量子力学のスピン角運動量や、部分偏極状態の記述方法に関連が深い。1927年に物理学者ヴォルフガング・パウリによって、スピン角運動量の記述のために導入された。 \sigma_1.

新しい!!: スピン角運動量とパウリ行列 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: スピン角運動量とヒルベルト空間 · 続きを見る »

ヒッグス粒子

ヒッグス粒子(ヒッグスりゅうし、 ヒッグス・ボソン)とは、1964年にピーター・ヒッグスが提唱したヒッグス機構において要請される素粒子である。 ヒッグス自身は「so-called Higgs boson(いわゆる ヒッグス粒子と呼ばれているもの)」と呼んでおり、他にも様々な呼称がある。 本記事では便宜上ヒッグス機構・ヒッグス粒子の双方について説明する。質量の合理的な説明のために、ヒッグス機構という理論体系が提唱されており、その理論内で「ヒッグス場」や「ヒッグス粒子」が言及されているという関係になっているためである。.

新しい!!: スピン角運動量とヒッグス粒子 · 続きを見る »

ディラック方程式

ディラック方程式(ディラックほうていしき)はフェルミ粒子を記述するディラック場が従う基礎方程式である。ポール・ディラックにより相対論的量子力学として導入され、場の量子論に受け継がれている。.

新しい!!: スピン角運動量とディラック方程式 · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: スピン角運動量とフェルミ粒子 · 続きを見る »

エフゲニー・リフシッツ

エフゲニー・ミハイロヴィッチ・リフシッツ(ロシア語:Евгений Михайлович Лифшиц、ラテン文字転写:Evgeny Mikhailovich Lifshitz、1915年2月21日 - 1985年10月29日)は宇宙物理学を専門とする、ソビエト連邦の理論物理学者。 ランダウ、ピタエフスキーとの共著による一連の教科書「理論物理学教程」は、理論物理学を志す学生への手引きとして、あるいは超えるべき壁として今日でも広く知られ、読まれている。 Category:ロシアの物理学者 Category:ソビエト連邦の物理学者 Category:ソビエト連邦科学アカデミー正会員 Category:王立協会外国人会員 Category:モスクワ物理工科大学の教員 Category:労働赤旗勲章受章者 Category:人民友好勲章受章者 Category:レーニン賞受賞者 Category:スターリン賞受賞者 Category:ハリコフ県出身の人物 Category:ハルキウ出身の人物 Category:1915年生 Category:1985年没.

新しい!!: スピン角運動量とエフゲニー・リフシッツ · 続きを見る »

オブザーバブル

ブザーバブル(英語:Observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。.

新しい!!: スピン角運動量とオブザーバブル · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: スピン角運動量とクロス積 · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: スピン角運動量とクォーク · 続きを見る »

シュテルン=ゲルラッハの実験

ュテルン=ゲルラッハの実験(シュテルン=ゲルラッハのじっけん)は1922年にシュテルンと が行った実験である。加熱して蒸発させた銀粒子をビームとして磁界中に通過させると、ビームは2点に分かれることを示した。これは、電子にスピンがあることを示す。 シュテルン=ゲルラッハの実験の模式図.

新しい!!: スピン角運動量とシュテルン=ゲルラッハの実験 · 続きを見る »

ジョージ・ウーレンベック

ーズミット。1928年頃の写真。 ジョージ・ウーレンベック(George Eugene Uhlenbeck、1900年12月6日 - 1988年10月31日)はアメリカ合衆国に移住したオランダの物理学者である。電子のスピンの発見者とされる。.

新しい!!: スピン角運動量とジョージ・ウーレンベック · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: スピン角運動量とスピノール · 続きを見る »

スピントロニクス

ピントロニクス(spintronics)とは、固体中の電子が持つ電荷とスピンの両方を工学的に利用、応用する分野のこと。 スピンとエレクトロニクス(電子工学)から生まれた造語である。マグネットエレクトロニクス(magnetoelectronics)とも呼ばれるが、スピントロニクスの呼称の方が一般的である。 これまでのエレクトロニクスではほとんどの場合電荷の自由度のみが利用されてきたが、この分野においてはそれだけでなくスピンの自由度も利用しこれまでのエレクトロニクスでは実現できなかった機能や性能を持つデバイスが実現されている。この分野における代表的な例としては1988年に発見された巨大磁気抵抗効果があり、現在ハードディスクドライブのヘッドに使われている。.

新しい!!: スピン角運動量とスピントロニクス · 続きを見る »

スピン群

数学 において、 スピン群(スピンぐん、spin group) Spin(n) は特殊直交群 SO(n) の二重被覆であり、従って、以下に記すリー群の短完全系列が存在する。 n > 2 に対し、Spin(n) は単連結であり、よって SO(n) の普遍被覆である。 従って、リー群 Spin(n) の次元は n(n − 1)/2 と特殊直交群と同じであり、リー環も特殊直交群のものと同じである。 Spin(n) は、クリフォード多元環 Cℓ(n) の乗法可逆元からなる部分群として構成できる。 n 次元実ユークリッド空間 Rn の標準的正値 2 次形式に対するクリフォード多元環および偶クリフォード多元環を夫々 Cℓ(n)、Cℓ0(n) と書く。 Cℓ(n) の乗法可逆元全体 Cℓ(n)× は乗法群になり、Cℓ0(n) の乗法可逆元全体 Cℓ0(n)× はその部分群になる。 X∈Cℓ(n)× に対して、 は Cℓ(n) の内部自己同型である。 一般クリフォード群 は、Cℓ(n)× の部分群で、特殊クリフォード群 も部分群である。 Cℓ(n) の主逆自己同型を J と書くとき、X∈Γ(n) のノルム は Cℓ(n) の中心の可逆元である。 準同型としてのノルム写像 ν の Γ0(n) への制限の核 Ker(ν|Γ0(n)) は、Spin(n) になる。.

新しい!!: スピン角運動量とスピン群 · 続きを見る »

スピン軌道相互作用

ピン軌道相互作用(、稀に)とは電子のスピンと、電子の軌道角運動量との相互作用のこと。 相対論的に取り扱われるディラック方程式(相対論的量子力学)では自然に導入される概念である。スピン軌道相互作用により、縮退していた電子のエネルギー固有値が分裂する。 原子核に於いても電子と同様のモデルを核子に付いても用い、スピン軌道相互作用による準位の分裂を用いて魔法数を説明した殻模型の確立によりゲッパート=マイヤーとイェンセンはノーベル賞を受賞した。 原子の最外殻電子ではスピン軌道相互作用によりスピン・軌道角運動量の向きがそろうことがある。常温の範囲では分裂した準位(LS多重項という)の中で最低エネルギーをもつ準位に状態がある確率が高い。最低エネルギーの多重項を知るためにフントの規則とよばれる実験則が有効である。.

新しい!!: スピン角運動量とスピン軌道相互作用 · 続きを見る »

ゼーマン効果

ーマン効果(ゼーマンこうか、Zeeman effect)は原子から放出される電磁波のスペクトルにおいて、磁場が無いときには単一波長であったスペクトル線が、原子を磁場中においた場合には複数のスペクトル線に分裂する現象である。原子を電場中に置いた場合のスペクトル線の分裂はシュタルク効果という。.

新しい!!: スピン角運動量とゼーマン効果 · 続きを見る »

サミュエル・ゴーズミット

ミュエル・ゴーズミット(ハウトスミット)(Samuel Abraham Goudsmit、1902年7月11日 - 1978年12月4日)は、米国の物理学者。 1925年にジョージ・ウーレンベックとともに電子のスピンを発見したことが有名である。.

新しい!!: スピン角運動量とサミュエル・ゴーズミット · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: スピン角運動量と内積 · 続きを見る »

商位相空間

位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、identification space)または商位相空間(しょういそうくうかん、quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing together") あるいは同一視してしまうことによって得られる新しい空間である。ただし、ここで貼合わせられるべき点の集まりというのは、何らかの同値関係によって決定される。 このような商空間構成は、与えられた位相空間から新たな空間を構成する方法の一つとして広く用いられる。.

新しい!!: スピン角運動量と商位相空間 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: スピン角運動量と回転群 · 続きを見る »

回転行列

線型代数において、回転行列(かいてんぎょうれつ、rotation matrix)とは、ユークリッド空間内における原点中心の回転変換の表現行列のことである。 二次元や三次元では、幾何学、物理学、コンピュータグラフィックスの分野での計算に非常によく使われている。大半の応用で扱うのは2次元や3次元の回転だが、一般の次元でも回転行列を定義することができる。 n 次元空間における回転行列は、実数を成分とする正方行列であって、行列式が 1 の n 次直交行列として特徴づけられる: n 次元の回転行列の全体は特殊直交群(あるいは回転群)と呼ばれる群をなす。.

新しい!!: スピン角運動量と回転行列 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: スピン角運動量と固有値 · 続きを見る »

球面座標系

球面座標系(きゅうめんざひょうけい、)とは、3次元ユークリッド空間に定まる座標系の一つで、一つの動径座標と二つの角度座標で表される極座標系である。第一の角度はある軸(通常は -軸を選ぶ)と動径がなす角度で、第二の角度は、その軸に垂直な平面にある別の軸(通常は -軸を選ぶ)とこの平面への動径の射影がなす角度である。通常は動径座標に記号 を用い、第一の角度座標には を、第二の角度座標には を用いて表される。動径座標は で与えられる。第二の角度座標を で与えられる。ここで は符号関数 である。-軸上 において特異性があり、分母がゼロとなるため が定まらない。さらに原点 においては も定まらない。 球面座標 から直交直線座標 への変換の式を微分すれば が得られて、ヤコビ行列とヤコビ行列式は となる。従って球面座標で表した体積素は となる。また、線素の二乗は となる。交叉項が現れないため、球座標は各点において動径が増減する方向と二つの角度が増減する方向がそれぞれに直交している直交座標系である。.

新しい!!: スピン角運動量と球面座標系 · 続きを見る »

積の微分法則

微分積分学における積の法則(せきのほうそく、product rule;ライプニッツ則)は、二つ(あるいはそれ以上)の函数の積の導函数を求めるのに用いる公式で、 あるいはライプニッツの記法では と書くことができる。あるいは無限小(あるいは微分形式)の記法を用いて と書いてもよい。三つの函数の積の導函数は である。.

新しい!!: スピン角運動量と積の微分法則 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: スピン角運動量と粒子 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: スピン角運動量と素粒子 · 続きを見る »

群(ぐん、むれ).

新しい!!: スピン角運動量と群 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: スピン角運動量と環 (数学) · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: スピン角運動量と物理学 · 続きを見る »

特殊ユニタリ群

次の特殊ユニタリ群(とくしゅユニタリぐん、special unitary group) とは、行列式が1の 次ユニタリ行列の為す群の事である。群の演算は行列の積で与えられる。 特殊ユニタリ群 はユニタリ群 の部分群であり、さらに一般線型群 の部分群である。 特殊ユニタリ群は素粒子物理学において、電弱相互作用のワインバーグ=サラム理論や強い相互作用の量子色力学、あるいはそれらを統合した標準模型や大統一理論などに出てくる。.

新しい!!: スピン角運動量と特殊ユニタリ群 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: スピン角運動量と特殊相対性理論 · 続きを見る »

相対論的量子力学

対論的量子力学(そうたいろんてきりょうしりきがく、relativistic quantum mechanics)は、量子力学に対して特殊相対性理論を適用した理論である。 基礎方程式はクライン-ゴルドン方程式である。素粒子散乱などの多粒子系高エネルギー物理を扱う際は、粒子をさらに場の概念に拡張した場の量子論が使われる。あつかう粒子の速度が光速に比べて十分小さい場合の量子力学(非相対論的量子力学)とは区別される。.

新しい!!: スピン角運動量と相対論的量子力学 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: スピン角運動量と相対性理論 · 続きを見る »

随伴行列

数学の特に線型代数学における行列の, エルミート転置 (Hermitian transpose), エルミート共軛 (Hermitian conjugate), エルミート随伴 (Hermitian adjoint) あるいは随伴行列(ずいはんぎょうれつ、adjoint matrix)とは、複素数に成分をとる 行列 に対して、 の転置およびその成分の複素共軛(実部はそのままで虚部の符号を反転する)をとって得られる 行列 を言う。 \end.

新しい!!: スピン角運動量と随伴行列 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: スピン角運動量と行列 · 続きを見る »

行列群

数学において、行列群 (matrix group) はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる。(行列のサイズは有限に制限される、なぜならば任意の群は任意の体上の無限行列の群として表現することができるからだ。)線型群 (linear group) は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする。 任意の有限群は線型である、なぜならばそれはを使って置換行列によって実現できるからだ。の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群。.

新しい!!: スピン角運動量と行列群 · 続きを見る »

複合粒子

複合粒子 (ふくごうりゅうし, composite particle) とは、素粒子の複合体である粒子の総称である。それ以上分割できない粒子である素粒子(または基本粒子)と対をなす概念である。素粒子物理学の進展によって、素粒子と考えられていたものが複合粒子であると判明することがある。.

新しい!!: スピン角運動量と複合粒子 · 続きを見る »

規格化

規格化 (normalization) ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることが規格化(正規化とも言う)である。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r.

新しい!!: スピン角運動量と規格化 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: スピン角運動量と角運動量 · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: スピン角運動量と転置行列 · 続きを見る »

軌道角運動量

軌道角運動量(きどうかくうんどうりょう、)とは、特に量子力学において、位置とそれに共役な運動量の積で表される角運動量のことである。 例えば原子の中で電子は、原子核が周囲に作る軌道を運動する。電子の全角運動量のうち、電子がその性質として持つスピン角運動量を除く部分が軌道角運動量である。.

新しい!!: スピン角運動量と軌道角運動量 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: スピン角運動量と量子力学 · 続きを見る »

自乗可積分函数

自乗可積分函数(じじょうかせきぶんかんすう、square-integrable function)とは、実数値または複素数値可測函数で絶対値の自乗の積分が有限であるものである。すなわち ならば、f は実数直線 (−∞, +&infin) 上で自乗可積分である。場合によっては積分区間が のように有界区間のこともある。.

新しい!!: スピン角運動量と自乗可積分函数 · 続きを見る »

自転

自転(じてん、rotation)とは、物体がその内部の点または軸のまわりを回転すること、およびその状態である。 天体の自転運動を表す言葉として用いられることが多い。力学における剛体の自転は、単に回転と呼ぶことの方が多く、オイラーの運動方程式により記述できる。英語で自転を意味する spin に由来するスピンという言葉も同義語であるが、物体の自転の意味でのスピンは自然科学以外の分野で用いられることが多い。例えばフィギュアスケートにおけるスピンや自動車がスリップして起きるスピンがある。量子力学や素粒子物理学におけるスピンも語源は自転に由来するが、物体の自転とは異なる概念と考えられている。.

新しい!!: スピン角運動量と自転 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: スピン角運動量と電子 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: スピン角運動量と連結空間 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: スピン角運動量と虚数単位 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: スピン角運動量とWell-defined · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: スピン角運動量と恒等写像 · 続きを見る »

桜井純

櫻井 純(さくらい じゅん、英語名Jun John Sakurai、1933年1月31日 - 1982年11月1日)は日本出身のアメリカ合衆国の理論物理学者である。東京都出身で、日本の新制高校に在学中、1949年に留学生選抜試験に合格してアメリカに渡り、セントルイスのトマス・ジェファーソン高校に入学。翌年、ニューヨークのブロンクス科学高校に転校し、1951年に卒業。1955年、ハーバード大学を最優等で卒業。1958年、コーネル大学大学院で博士号を取得。プリンストン高等研究所でのポスドク生活を経て、1959年、シカゴ大学の助教授となる。1964年、シカゴ大学教授となる。1970年にカリフォルニア大学ロサンゼルス校へ転任。 素粒子物理学における統一理論の先駆けとなる研究で頭角を現し、大学院生向けの教科書の著者としても知られたが、欧州原子核研究機構(CERN)滞在中にジュネーヴで亡くなった。.

新しい!!: スピン角運動量と桜井純 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: スピン角運動量と標準模型 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: スピン角運動量と正方行列 · 続きを見る »

歪エルミート行列

歪エルミート行列(わいえるみーとぎょうれつ、Skew-Hermitian matrix)あるいは反エルミート行列(はんえるみーとぎょうれつ、Anti-Hermitian matrix)とは、自身のエルミート共役が自身に負号をつけたものに等しいような複素正方行列のことである。つまり、 次正方行列 に対し、そのエルミート共役を で表すとき、 が歪エルミートならば、以下の条件を満たす。 行列 の成分をあらわに書けば、これは次のようにも表せる。 歪エルミート行列と似た定義を持つ行列として、エルミート行列がある。エルミート行列は自身と自身のエルミート共役が等しい。 歪エルミート行列はエルミート行列と同じく、正規行列の特別な場合であり、 をユニタリ行列 と見なせば、以下の正規行列の定義を満たしている。.

新しい!!: スピン角運動量と歪エルミート行列 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: スピン角運動量と波動関数 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: スピン角運動量と準同型 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: スピン角運動量と整数 · 続きを見る »

ここにリダイレクトされます:

スピン (物理学)スピン-1/2スピン1/2スピン演算子スピン数スピン角運動量演算子スピン量スピン量子数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »