ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

接束

索引 接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

32 関係: 単位円可微分多様体可縮空間可換環双対束対角関手層 (数学)余接空間余接束微分同相写像微分幾何学ヤコビ行列ユークリッド空間リー群ファイバー束ベクトル場ベクトル空間ベクトル束アトラス (多様体)円柱 (数学)写像の微分環上の加群点ごと直和 (位相空間論)非交和順序対計量テンソル超球面接ベクトル空間接線滑らかな関数断面 (位相幾何学)

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 接束と単位円 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 接束と可微分多様体 · 続きを見る »

可縮空間

数学において、位相空間 X は次のようなとき可縮 (contractible) である。X 上の恒等写像が、すなわち、ある定値写像にホモトープである。直感的には、可縮空間は連続的に一点に縮められるような空間である。 可縮空間はちょうど点のホモトピー型の空間である。可縮空間のすべてのホモトピー群は自明であることが従う。それゆえ非自明なホモトピー群をもつ任意の空間は可縮ではありえない。同様に、特異ホモロジーはホモトピー不変であるから、可縮空間のはすべて自明である。 位相空間 X に対して以下は全て同値である(ここで Y は任意の位相空間である).

新しい!!: 接束と可縮空間 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 接束と可換環 · 続きを見る »

双対束

数学において、ベクトル束 の双対束 (dual bundle) はファイバーが のファイバーの双対空間であるようなベクトル束 である。双対束はの双対表現をとることによって construction を使うことによって構成することができる。 具体的には、変換関数が の の局所自明化が与えられると、 の局所自明化は のと同じ開被覆によって変換関数は (転置の逆)で与えられる。すると双対束 は を使って構成される。 例えば、可微分多様体の接束の双対は余接束である。 底空間 がパラコンパクトかつハウスドルフであれば、実の有限ランクのベクトル束 とその双対 はベクトル束として同型である。しかしながら、ベクトル空間と全く同じように、 に内積が与えられていない限り同型の選択は存在しない。これは複素ベクトル束の場合には正しくない、例えばリーマン球面上の (tautological line bundle) はその双対と同型でない。.

新しい!!: 接束と双対束 · 続きを見る »

対角関手

圏論において、積 a\times a が存在する任意の圏 \mathcal の任意の対象 a に対して、 を満たす対角射 (diagonal morphism) が存在する。ただし \pi_k は k 次成分への自然な射影射である。この射の存在は(同型を除いて)積を特徴づける普遍性の結果である。ここでの二項の積への制限は表記の簡単さのためである。対角射は同様に任意の積に対して存在する。集合の圏の対角射の像は、カルテジアン積の部分集合として、定義域上の関係、すなわち等式である。 に対して、対角射は対象 a の元 x 上のその作用によって単純に記述することができる。すなわち、\delta_a(x).

新しい!!: 接束と対角関手 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 接束と層 (数学) · 続きを見る »

余接空間

微分幾何学において、滑らかな(あるいは可微分)多様体の各点 x に x における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、x における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。.

新しい!!: 接束と余接空間 · 続きを見る »

余接束

数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。.

新しい!!: 接束と余接束 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 接束と微分同相写像 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 接束と微分幾何学 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 接束とヤコビ行列 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 接束とユークリッド空間 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 接束とリー群 · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: 接束とファイバー束 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 接束とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 接束とベクトル空間 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: 接束とベクトル束 · 続きを見る »

アトラス (多様体)

数学の特に微分位相幾何学におけるアトラス (atlas; 地図帳) あるいは座標近傍系(ざひょうきんぼうけい、co­ordinate neighbourhood system)は多様体を記述するために必要である。アトラスはチャート (chart; 地図) あるいは座標近傍 (co­ordinate neighbourhood) と呼ばれる元の族であり、各チャートは簡単に言えば多様体の各点の周りの適当な領域に座標を入れて考えられるようにするものである。例えば地表を多様体と見なせば、アトラスとその各チャートは日常的な意味で言う地図帳と各地図と考えられる。一般には、アトラスは多様体の厳密な定義の一部として含まれ、あるいは多様体と関連深いベクトル束などのファイバー束においても同様である。.

新しい!!: 接束とアトラス (多様体) · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 接束と円柱 (数学) · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

新しい!!: 接束と写像の微分 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 接束と環上の加群 · 続きを見る »

点ごと

数学において,点ごとということばは,ある性質がある関数 の各値 を考えることによって定義されることを指し示すために用いられる.点ごとの概念の重要なクラスは点ごとの演算である,つまり,関数に演算を関数の値に定義域の各点に対して別々に適用することによって定義される演算である.重要なもまた点ごとに定義できる..

新しい!!: 接束と点ごと · 続きを見る »

直和 (位相空間論)

位相空間論および関連した数学の分野において、位相空間の族の非交和 (disjoint union)(次のようにも呼ばれる: 直和 (direct sum)、自由和集合 (free union)、自由和 (free sum)、位相的和 (topological sum)、あるいは余積 (coproduct))は台集合の非交和に非交和位相 (disjoint union topology) と呼ばれるを入れることによって形成される空間である。ラフに言えば、2つ以上の空間の空間をそれぞれが孤立しているように一緒に考える。 名前 余積 は非交和は積空間の構成の圏論的双対であるという事実に由来する。.

新しい!!: 接束と直和 (位相空間論) · 続きを見る »

非交和

集合論において、集合の族の直和 (direct sum) は、以下の緊密に関連した二種類の概念を指して用いられる。.

新しい!!: 接束と非交和 · 続きを見る »

順序対

数学における順序対(じゅんじょつい、ordered pair)は、座標 (coordinate) や射影 (projection) とも呼ばれるふたつの成分 (entry) を持つ対象を総称するものである。順序対では常に、第一成分(第一座標、左射影)と第二成分(第二座標、右射影)の対によって対象が一意に決定される。第一座標が a で第二座標が b であるような順序対は通常、(a, b) で表される。「順序」対という呼称は、a.

新しい!!: 接束と順序対 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 接束と計量テンソル · 続きを見る »

超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

新しい!!: 接束と超球面 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 接束と接ベクトル空間 · 続きを見る »

接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

新しい!!: 接束と接線 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: 接束と滑らかな関数 · 続きを見る »

断面 (位相幾何学)

位相幾何学の分野におけるファイバー束の断面(だんめん)あるいは切断(せつだん、section)若しくは横断面 (cross-section) とは、底空間をファイバー束の中に実現する写像或いはその像をいう。.

新しい!!: 接束と断面 (位相幾何学) · 続きを見る »

ここにリダイレクトされます:

接バンドル接ベクトルバンドル接ベクトル束自然なベクトル場

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »