ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

層 (数学)

索引 層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

31 関係: Annals of Mathematics可換図式同型写像射 (圏論)層係数コホモロジー岡潔帰納極限位相空間佐藤幹夫 (数学者)圏 (数学)圏論モニック射トポス (数学)アレクサンドル・グロタンディークアンリ・カルタンエピ射ケンブリッジ大学出版局シュプリンガー・サイエンス・アンド・ビジネス・メディアジャン=ピエール・セールスキーム芽 (数学)順序集合近傍 (位相空間論)関手圏開集合自然変換集合連接層準同型数学的構造1955年

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: 層 (数学)とAnnals of Mathematics · 続きを見る »

可換図式

5項補題の証明で使われる可換図式 数学、特に圏論において、可換図式 (commutative diagram) は、対象(あるいは頂点)と射(あるいは矢、辺)の図式であって、始点と終点が同じである図式のすべての向き付きの道が合成によって同じ結果になるようなものである。可換図式は代数学において方程式が果たすような役割を圏論において果たす(Barr-Wells, Section 1.7 を参照)。 図式は可換でないかもしれない、すなわち図式の異なる道の合成は同じ結果にならないかもしれないことに注意する。明確化のために、「この可換図式」(this commutative diagram) あるいは「図式は交換する」(the diagram commutes) といったフレーズが使われる。.

新しい!!: 層 (数学)と可換図式 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 層 (数学)と同型写像 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 層 (数学)と射 (圏論) · 続きを見る »

層係数コホモロジー

数学において、層コホモロジー (sheaf cohomology) は、アーベル群の層に関連する層の理論の一面であり、ホモロジー代数を用いて、層 F の大域切断の具体的な計算を可能とする。数値的な領域での幾何学的な問題の記述として、層コホモロジーの理論は、重要な幾何学的な不変量の次元を計算することへ有用なツールとして使うことができる。 1950年以後の数年間で急速に発展した層コホモロジーは、リーマン・ロッホの定理のより古典的な方法や代数幾何学の(linear system of divisors)の解析や多変数複素函数論やホッジ理論へ結びついた。層コホモロジー群のランク、もしくは次元は、幾何学的なデータの新しい情報源になったり以前の研究の新しい解釈を与えたりする。.

新しい!!: 層 (数学)と層係数コホモロジー · 続きを見る »

岡潔

岡 潔(おか きよし、1901年〈明治34年〉4月19日 - 1978年〈昭和53年〉3月1日)は、日本の数学者。奈良女子大学名誉教授。理学博士(京都帝国大学、1940年〈昭和15年〉)。.

新しい!!: 層 (数学)と岡潔 · 続きを見る »

帰納極限

数学における順極限(じゅんきょくげん)または直極限(ちょくきょくげん、direct limit)もしくは帰納極限(きのうきょくげん、inductive limit)は、「対象の向き付けられた族」の余極限である。本項ではまず群や加群などの代数系に対する帰納極限の定義から始めて、あらためて任意の圏において通用する一般的な定義を与える。.

新しい!!: 層 (数学)と帰納極限 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 層 (数学)と位相空間 · 続きを見る »

佐藤幹夫 (数学者)

佐藤 幹夫(さとう みきお、男性、1928年4月18日 - )は、日本の数学者で佐藤超函数、概均質ベクトル空間、D加群の創始者。大阪大学教授を経て京都大学数理解析研究所名誉教授。京都大学数理解析研究所元所長。1992年退官。東京都出身。 東京大学理学部数学科で彌永昌吉に師事した後、一時期高校教師を務めるなど異色の経歴を持つ。ノーベル物理学賞受賞の物理学者朝永振一郎に学んだこともある。.

新しい!!: 層 (数学)と佐藤幹夫 (数学者) · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 層 (数学)と圏 (数学) · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 層 (数学)と圏論 · 続きを見る »

モニック射

数学の圏論において、モニック射あるいはモノ射、単射 (monomorphism, monic morphism) とは、左簡約可能な射のことである。つまり、射 がモニックであるとは、任意の射 に対して、 が成り立つということである。 これは集合間の写像の意味での単射の抽象化であり、射が写像であり集合論的単射であれば圏論的単射であるが、逆は必ずしも成り立たない。しかしながら、集合の圏や群の圏、環上の加群の圏などでは、圏論の意味での単射は集合論の意味での単射と一致する。.

新しい!!: 層 (数学)とモニック射 · 続きを見る »

トポス (数学)

数学におけるトポス(topos)とは、位相空間上の層のなす圏を一般化した概念である。アレクサンドル・グロタンディークによるヴェイユ予想解決に向けた代数幾何学の変革の中で、数論的な図形(スキーム)の上で有意義なホモトピー・コホモロジー的量が定義できる細かい「位相」を考えるために導入された。 その後数理論理学者たちによる更なる公理化を経て、集合論のモデルを与える枠組みとしても認識されるようになった。.

新しい!!: 層 (数学)とトポス (数学) · 続きを見る »

アレクサンドル・グロタンディーク

アレクサンドル・グロタンディーク(Alexander Grothendieck, 1928年3月28日 - 2014年11月13日)は主にフランスで活躍した、ドイツ出身のユダヤ系フランス人の数学者である。 日本の数学界では彼は「グロタンディク」、「グロタンディック」、「グロタンディエク」、「グロタンディエック」、「グロテンディーク」、「グローテーンディーク」などと表記されているGrothendieck という名は、オランダ起源です。オランダにはこの名と類似の名(en dyck など)はよくあるものです。それは『大きな堤防』の意味です。私は(オランダ語よみやフランス語よみでなく)ドイツ語の発音―グロテンディーク―にしたがっています。。.

新しい!!: 層 (数学)とアレクサンドル・グロタンディーク · 続きを見る »

アンリ・カルタン

アンリ・ポール・カルタン(Henri Paul Cartan、1904年7月8日 - 2008年8月13日)は、フランスの数学者。数学者エリ・カルタンの長男。ニコラ・ブルバキの創始者のひとり。 1904年ナンシー生まれ。1929年高等師範学校卒業。リール大学準教授を経て、1938年からストラスブール大学教授、1940年からソルボンヌ大学教授を務めた。アメリカ、ドイツなどでも教え、1975年までパリ第11大学で教鞭を執った。2008年にパリで104歳という長寿を全うした。 多変数複素関数論、ホモロジー代数に業績を残した。このうち多変数複素関数論では岡潔の業績を層の概念を用いて整理し、多くの数学者に受け入れられるようにした。 Category:フランスの数学者 040708 -040708 Category:ウルフ賞数学部門受賞者 Category:ブルバキ Category:フランス科学アカデミー会員 Category:日本学士院客員 Category:王立協会外国人会員 Category:ロシア科学アカデミー外国人会員 Category:パリ大学の教員 Category:ストラスブール大学の教員 Category:リール大学の教員 Category:ナンシー出身の人物 Category:長寿の人物 Category:数学に関する記事 Category:1904年生 Category:2008年没.

新しい!!: 層 (数学)とアンリ・カルタン · 続きを見る »

エピ射

数学の圏論において、エピ射あるいは全射 (epimorphism, epic morphism) とは、右簡約可能な射のことである。つまり、射 がエピであるとは、任意の射 に対して、 が成り立つということである。 これは集合間の写像の意味での全射の抽象化であり、射が写像であり集合論的全射であれば圏論的全射であるが、逆は必ずしも成り立たない。例えば可換環の圏における整数環から有理数体への包含写像 が反例となる。しかしながら、集合の圏や群の圏、環上の加群の圏などでは、圏論の意味での全射は集合論の意味での全射と一致する。.

新しい!!: 層 (数学)とエピ射 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: 層 (数学)とケンブリッジ大学出版局 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 層 (数学)とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: 層 (数学)とジャン=ピエール・セール · 続きを見る »

スキーム

ーム(scheme)とは、「枠組みをもった計画」といった意味のギリシア語を語源とする言葉である。スキーマ(schema)と似た意味で用いられることがある。同様の語源・意味のドイツ語 Schema(シェーマ)やフランス語 schéma(シェマ)なども、日本語におけるスキームやスキーマと同様の意味で用いられることがある。.

新しい!!: 層 (数学)とスキーム · 続きを見る »

芽 (数学)

数学において、位相空間の中あるいは上の対象の芽(め、が、germ)とは、その対象に同種の対象を加えて作られた同値類のうち、局所的な性質が共通するように集めてきたものを呼ぶ概念である。特に、問題の対象として関数(あるいは写像)や部分集合を考えることが多い。このアイデアの特定の実行において、問題の集合あるいは写像は解析的あるいは滑らかのようないくつかの性質をもつが、一般にはこれは必要とされない(問題の写像や関数は連続である必要さえない)。しかしながら、対象の定義されている空間は、局所的という言葉がなんらかの意味をもつために位相空間である必要がある。 名前は層 のメタファーの続きで cereal germ に由来している。穀物にとってそうであるように芽は(局所的に)関数の「心臓 (heart)」であるからだ。.

新しい!!: 層 (数学)と芽 (数学) · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 層 (数学)と順序集合 · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: 層 (数学)と近傍 (位相空間論) · 続きを見る »

関手圏

圏論という数学の分野において、与えられた2つの圏の間の関手たちは関手圏(かんしゅけん、functor category)と呼ばれる圏をなす。その対象は関手であり、射は関手の間の自然変換である。関手圏は主に2つの理由によって興味が持たれる:.

新しい!!: 層 (数学)と関手圏 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 層 (数学)と開集合 · 続きを見る »

自然変換

数学の一分野である圏論において、自然変換(しぜんへんかん、natural transformation)は、ある函手をその圏に関する内部構造(即ち射の合成)を保ちながら別の函手に変形する方法を与えるものである。したがって直観的には、自然変換というのは「函手間の射」のことであると考えうる。このことは実際に、函手圏と呼ばれるものを定義することにより厳密に定式化することができる。圏論において自然変換の概念は、圏と函手に次いで最も基本的な概念であり、それ故に圏論を用いる議論の大部分に現れる。.

新しい!!: 層 (数学)と自然変換 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 層 (数学)と集合 · 続きを見る »

連接層

数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。.

新しい!!: 層 (数学)と連接層 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 層 (数学)と準同型 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 層 (数学)と数学的構造 · 続きを見る »

1955年

記載なし。

新しい!!: 層 (数学)と1955年 · 続きを見る »

ここにリダイレクトされます:

大域切断層の理論層論切断 (層)前層

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »