ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

恒星

索引 恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

149 関係: 培風館原始星原子番号おおいぬ座おおいぬ座VY星とも座ゼータ星はくちょう座かに星雲半径反射星雲天体天球天文単位太陽太陽フレア太陽系季節宇宙空間対流密度尾崎洋二属格巨星中性子星主系列星年周視差人類位置エネルギー圧力地動説地球ミラ (恒星)マグネシウムネオンハーバード大学バーナード星バイエル符号ヨハン・バイエルヘリウムヘルツシュプルング・ラッセル図ヘンリー・ノリス・ラッセルヘンリー・ドレイパーカタログブラックホールプレアデス星団プロキオンパルサーパーセクデネブフラウンホーファー線フェルミ縮退...ドップラー効果ニュートン (雑誌)ベテルギウスベガ分子雲分光器りゅうこつ座アメリカ航空宇宙局アークトゥルスアイナー・ヘルツシュプルングウォルフ・ライエ星エネルギーオリオン大星雲オリオン座ガンマ星カペラ (恒星)カノープスガスキロメートルギリシア神話クラウディオス・プトレマイオスケルビンケルビン・ヘルムホルツ機構ケンタウルス座アルファ星ケイ素コロナシュテファン=ボルツマンの法則シリウスジョン・フラムスティードスペクトルスペクトル分類光崩壊光年固有運動理想気体理想気体の状態方程式秒 (角度)窒素等級 (天文)絶対等級熱エネルギー熱放射白色矮星銀河系青色巨星褐色矮星質量超巨星超新星超新星残骸距離黒体放射黒色矮星輝巨星輝線星雲近い恒星の一覧赤外線赤色巨星赤色矮星赤色超巨星脈動変光星重力重力崩壊重力ポテンシャル金星酸素英語連星G型主系列星HEAO-2K型主系列星X線X線バースターX線観測衛星恒星の一覧恒星天文学恒星内部物理学恒星物理学恒星風恒星進化論東京大学核融合反応水素気体温度準巨星準矮星満月朝倉書店木星惑星惑星状星雲星座明るい恒星の一覧新星出版社放射散光星雲 インデックスを展開 (99 もっと) »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 恒星と培風館 · 続きを見る »

原始星

原始星(げんしせい)(protostar)とは、誕生初期の恒星のことで、暗黒星雲の一部が自己の重力で収縮しはじめ、可視光でも観測できるおうし座T型星になる前の状態までを指す。 暗黒星雲が近くの超新星爆発などによる衝撃波を受けると、それによって物質の濃淡ができる。濃くなった部分は重力が強くなるので、周囲の物質を引きつけさらに物質の濃度が濃くなる。するとさらに重力が強くなり、加速度的に濃度が濃くなっていく。このようにして原始星が誕生する。 原始星には周囲からさらに物質が集積してくるので、降着円盤が形成され、原始星に取り込まれきれなかった物質は、円盤に垂直な方向へ宇宙ジェットとして放出される。この宇宙ジェットが周囲の星雲の物質と衝突して輝いているのがハービッグ・ハロー天体である。 原始星には周囲の物質が超音速で落下していき衝撃波面が形成されている。その面で落下物質の運動エネルギーが一気に熱に変わっている。そのため、原始星は主系列星よりも非常に明るく輝いている。この時は原始星はまだ周囲を暗黒星雲に覆われているため、星雲の外からは可視光では観測できず赤外線だけが観測される。この状態は、それを理論的に導出した日本の宇宙物理学者・林忠四郎にちなんで林フェイズと呼ばれる。 原始星は自己の重力でゆっくりと収縮していき、その際の重力エネルギーの解放で徐々に中心核の温度を上げていく。また、恒星風により周囲の暗黒星雲を吹き飛ばす。こうして可視光でも観測可能になった星がおうし座T型星である。さらに中心核の温度が上昇し、水素の核融合反応が開始されると主系列星となる。 原始星フレアの温度はおよそ1億度で、エネルギーは太陽フレアの約1万倍にもなる。.

新しい!!: 恒星と原始星 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

新しい!!: 恒星と原子番号 · 続きを見る »

おおいぬ座

おおいぬ座(大犬座、Canis Major)は、トレミーの48星座の1つ。日本では冬の南の空にやや低く見られる星座である。 α星は、全天21の1等星の中で最も明るく、シリウスと呼ばれる。シリウスと、こいぬ座のα星プロキオン、オリオン座のα星ベテルギウスの3つの1等星で、冬の大三角を形成する。.

新しい!!: 恒星とおおいぬ座 · 続きを見る »

おおいぬ座VY星

おおいぬ座VY星(おおいぬざVYせい)は、おおいぬ座にある赤色超巨星である。.

新しい!!: 恒星とおおいぬ座VY星 · 続きを見る »

とも座ゼータ星

とも座ζ星は、とも座で一番明るい恒星で2等星。肉眼で色を識別できる程度に明るい恒星の中では最も青く見える。 日本ではあまり高く昇らず、南中高度は東京で約14度、そのため本来は明るい2等星だが、それよりは暗く見え、同様にレイリー散乱により、青みも少なく見える。.

新しい!!: 恒星ととも座ゼータ星 · 続きを見る »

はくちょう座

はくちょう座(白鳥座、Cygnus)は、トレミーの48星座の1つ。.

新しい!!: 恒星とはくちょう座 · 続きを見る »

かに星雲

かに星雲(かにせいうん、Crab Nebula 、M1、NGC1952)はおうし座にある超新星残骸で、地球からの距離はおよそ7000光年。典型的なパルサー星雲で、中心部には「かにパルサー」と呼ばれるパルサーの存在が確認されており、現在も膨張を続けている。 この星雲の元となった超新星爆発が1054年に出現したことが、中国や日本の文献に残されている。.

新しい!!: 恒星とかに星雲 · 続きを見る »

半径

球の半径 半径(はんけい、radius)は、円や球体など中心(あるいは中心軸)をもつ図形の、中心(中心軸)から周に直交するように引いた線分のこと。また、その線分の長さを指すこともあり、この長さを数学や物理学では小文字の r で表すことがある。 円や球の場合は、差し渡しの長さを意味する径の半分の長さを持つために、これを半径といい、対して区別のために径を直径と呼ぶ。一方で、半径は中心に関する対称性を持つ図形にしか定義できないという特徴を持つため、半径と径とは直接的な関係を持つわけではない。.

新しい!!: 恒星と半径 · 続きを見る »

反射星雲

反射星雲(はんしゃせいうん、reflection nebula)とは、星間分子雲が近くの恒星の光を反射することで我々の目に見えている天体である。反射星雲を照らしている恒星は、輝線星雲の場合のように星雲のガスを電離するほどには温度が高くないが、ガスに含まれる塵を散乱光で照らし出すのには十分な明るさを持っている。したがって、反射星雲のスペクトルは星雲を照らしている星のスペクトルとほぼ同じである。分子雲を構成する塵粒子のうち、このような光の散乱に寄与しているのは主に炭素(ダイヤモンド)や鉄、ニッケルなどである。鉄やニッケルはしばしば銀河磁場によって粒子が同じ方向に整列しているため、反射星雲の散乱光はわずかに偏光していることがある。輝線星雲と反射星雲のこのような性質の違いは1922年にエドウィン・ハッブルによって発見された。 光の散乱は赤い光よりも青い光の方により強く効くため、反射星雲は通常青く見える。これは空が青く、夕焼けが赤く見えるのと同じ物理過程である。 反射星雲と輝線星雲はしばしば一緒に存在し、両者をまとめて散光星雲と呼ぶ場合もある。このように両者が共存している例はオリオン大星雲(M42)である。 現在約500個の反射星雲が知られている。この中で最も代表的で美しいものはおうし座のプレアデス星団(M45)の周囲を取り巻く反射星雲である。いて座の三裂星雲(M20)の中にも青い反射星雲を見ることができる。 反射星雲はまた、星形成の現場でもあることが多い。.

新しい!!: 恒星と反射星雲 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 恒星と天体 · 続きを見る »

天球

天球(てんきゅう、celestial sphere)とは、惑星や恒星がその上に張り付き運動すると考えられた、地球を中心として取り巻く球体のこと。また、位置天文学において地球から見える天体の方向を表すために無限遠の距離にある仮想の球面上の点も天球と呼ぶ。.

新しい!!: 恒星と天球 · 続きを見る »

天文単位

天文単位(てんもんたんい、astronomical unit、記号: au)は長さの単位で、正確に である。2014年3月に「国際単位系 (SI) 単位と併用される非 SI 単位」(SI併用単位)に位置づけられた。それ以前は、SIとの併用が認められている単位(SI単位で表される、数値が実験的に得られるもの)であった。主として天文学で用いられる。.

新しい!!: 恒星と天文単位 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 恒星と太陽 · 続きを見る »

太陽フレア

太陽フレア(たいようフレア、Solar flare)とは太陽における爆発現象。別名・太陽面爆発。 太陽系で最大の爆発現象で、小規模なものは1日3回ほど起きている。多数の波長域の電磁波の増加によって観測される。特に大きな太陽フレアは白色光でも観測されることがあり、白色光フレアと呼ぶ。太陽の活動が活発なときに太陽黒点の付近で発生する事が多く、こうした領域を太陽活動領域と呼ぶ。太陽フレアの初めての観測は、1859年にイギリスの天文学者、リチャード・キャリントンによって行われた(1859年の太陽嵐)。 「フレア」とは火炎(燃え上がり)のことであるが、天文学領域では恒星に発生する巨大な爆発現象を指している。現在では太陽以外の様々な天体でも観測されている。 アメリカ航空宇宙局(NASA)によると、2012年7月には巨大な太陽フレアが地球をかすめた 。次の10年間に同程度のフレアが実際に地球を襲う確率は12%であると推定される。.

新しい!!: 恒星と太陽フレア · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: 恒星と太陽系 · 続きを見る »

季節

季節(きせつ、、 、)は、特定の天候、昼夜の長短(日照時間)などによって示される、一年の中の時期((温帯では)春・夏・秋・冬の4つの時期)で、太陽に対する地球の位置に起因するもの。暦などでは天文学的な指標によって季節を区分し、天気予報や地理学などにおいては気象条件によって区分することが多い。両者は互いに関係しあう。.

新しい!!: 恒星と季節 · 続きを見る »

宇宙空間

地球大気の鉛直構造(縮尺は正しくない) 宇宙空間(うちゅうくうかん、)は、地球およびその他の天体(それぞれの大気圏を含む)に属さない空間領域を指す。また別義では、地球以外の天体を含み、したがって、地球の大気圏よりも外に広がる空間領域を指す。なお英語では を省いて単に と呼ぶ場合も多い。 狭義の宇宙空間には星間ガスと呼ばれる水素 (H) やヘリウム (He) や星間物質と呼ばれるものが存在している。それらによって恒星などが構成されていく。.

新しい!!: 恒星と宇宙空間 · 続きを見る »

対流

対流(たいりゅう、convection)とは、流体において温度や表面張力などが原因により不均質性が生ずるため、その内部で重力によって引き起こされる流動が生ずる現象である。 地球の大気においては、大気の鉛直方向の運動は高度 0 キロメートルから約 11 キロメートルの層に限られ、この領域を対流圏と呼ぶ。また地球や惑星の内部では、対流により内部の熱源から地表面への熱輸送が生じており、地表面の変動を引き起こす原因となっている。 近年、計算機の性能が向上し、流体の運動方程式(ナビエ-ストークスの式)を高精度に計算することが可能となったため、コンピュータを用いたシミュレーションによる対流現象の研究が盛んに行われており、工学的な技術としても重要な分野である。また惑星内部の対流など、実験・観測が不可能な領域における流体の挙動を理論的に解明する研究も行われている。.

新しい!!: 恒星と対流 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 恒星と密度 · 続きを見る »

尾崎洋二

尾崎 洋二(おさき ようじ、1938年7月20日 - )は、日本の天文学者、理学博士。東大名誉教授。専門は、恒星物理学。海野和三郎に師事した - 内のページ。。.

新しい!!: 恒星と尾崎洋二 · 続きを見る »

属格

属格(ぞっかく、genitive case、casus genitivus、родительный падеж)は、名詞・代名詞の格の一つで、主に所有を表す。英語では所有格(posessive)、ドイツ語では2格(der zweite Fall)とも呼ぶ。スラヴ語派については生格(せいかく)と呼ぶが、これは訳語の違いにすぎない。 日本語では主に格助詞「の」で表される(日本語では体言を修飾できる格はこれだけなので連体格とも呼ばれる)が、インド・ヨーロッパ語族の属格は、それだけでなく以下のような幅広い用法がある。;所有:所有およびそれに類する関係を表す。もっとも一般的な機能である。;意味上の主語・目的語:動詞的な意味を持つ名詞を修飾し、意味上の主語・目的語を示す。;部分の属格:全体の一部分であることを示す。;分離の属格:奪格に由来する。;同格の属格:同じものを説明したり言い換えたりする。;副詞的属格:名詞の属格を副詞的に用いる用法。;形容詞的用法:形容詞的な抽象名詞で修飾することで、形容詞と同等のことを表現する。;*A man of importance;*国家的の事(現在は形容動詞で「国家的な事」と言うのが普通だが、明治から昭和戦前期まではこの言い方が普通だった)、緑の洋服、裸の人;否定の属格 英語では、このうち所有は所有格として名詞(-'s)および人称代名詞に格形が残存しており、また意味上の主語も所有格で表す場合があるが、それ以外の属格の用法は前置詞ofに置き換えられた。なお近年は、's および my, your などの所有形は格ではないという説が有力である。例えば the girl next door's cat (隣の少女の猫) では、's は the girl next door という句にかかり、door という語にかかっているのではない。したがって 's を接語と見なす言語学者が増えている。 ドイツ語では、単数男性名詞、単数中性名詞で「-s」を付け女性名詞、複数形では無変化であるが、どちらも冠詞や形容詞が属格に伴う変化を行う。他の名詞を修飾する場合には被修飾語のあとに付けるのが原則であるが、前に付けることもあり、その場合被修飾語の冠詞は省略される。現代語では「von」+三格(与格)で代用するのが普通である。人称代名詞の属格は所有関係には使われない。また、英語の人称代名詞の所有形に当たる働きをするものが別にあり、所有代名詞という。 ロマンス語(フランス語、イタリア語、スペイン語など)では基本的に格変化が消失したため、属格はすべてde/diといった前置詞に置き換えられた。 なお、英語の人称代名詞の所有格に相当する機能は所有形容詞によって表す。.

新しい!!: 恒星と属格 · 続きを見る »

巨星

ESO image.'' 巨星(きょせい、giant star)とは、同じ表面温度を持つ主系列星よりも半径および明るさが非常に大きい恒星のことである。Giant star, entry in Astronomy Encyclopedia, ed.

新しい!!: 恒星と巨星 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

新しい!!: 恒星と中性子星 · 続きを見る »

主系列星

主系列星(しゅけいれつせい、main sequence star)とは、ヘルツシュプルング・ラッセル図(HR図)上で、左上(明るく高温)から図の右下(暗く低温)に延びる線である主系列 (Main Sequence) に位置する恒星をいう。矮星ともいう。.

新しい!!: 恒星と主系列星 · 続きを見る »

年周視差

年周視差(ねんしゅうしさ)とは、地球の公転運動による視差のために天体の天球上の位置が公転周期と同じ周期で変化して見える現象のことである。.

新しい!!: 恒星と年周視差 · 続きを見る »

人類

人類(じんるい、humanity)とは、個々の人間や民族などの相違点を越える《類》としての人間のこと『岩波 哲学思想事典』p.858 【人類】阪上孝 執筆。この用語には、「生物種としてのヒト」という側面と、「ひとつの《類》として実現すべき共同性」という側面がある。.

新しい!!: 恒星と人類 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: 恒星と位置エネルギー · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 恒星と圧力 · 続きを見る »

地動説

地動説(ちどうせつ)とは、宇宙の中心は太陽であり、地球は他の惑星と共に太陽の周りを自転しながら公転している、という学説のこと。宇宙の中心は地球であるとする天動説(地球中心説)に対義する学説であり、ニコラウス・コペルニクスが唱えた。彼以前にも太陽を宇宙の中心とする説はあった。太陽中心説(Heliocentrism)ともいうが、地球が動いているかどうかと、太陽と地球どちらが宇宙の中心であるかは厳密には異なる概念であり、地動説は「Heliocentrism」の訳語として不適切だとの指摘もある。聖書の解釈と地球が動くかどうかという問題は関係していたが、地球中心説がカトリックの教義であったことはなかった。地動説(太陽中心説)確立の過程は、宗教家(キリスト教)に対する科学者の勇壮な闘争というモデルで語られることが多いが、これは19世紀以降に作られたストーリーであり、事実とは異なる。 地動説の図.

新しい!!: 恒星と地動説 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 恒星と地球 · 続きを見る »

ミラ (恒星)

ハッブル宇宙望遠鏡が撮影したミラ。 紫外線で撮影されたミラの「尾」。 紫外線と可視光で撮影されたミラ。 ミラ(Mira)は、くじら座のο(オミクロン)星(ο Cet)。最も有名な脈動変光星の1つで、ミラ型変光星の代表星である。.

新しい!!: 恒星とミラ (恒星) · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: 恒星とマグネシウム · 続きを見る »

ネオン

ネオン(neon )は原子番号 10、原子量 20.180 の元素である。名称はギリシャ語の'新しい'を意味する「νέος (neos)」に由来する。元素記号は Ne。 単原子分子として存在し、単体は常温常圧で無色無臭の気体。融点 −248.7 ℃、沸点 −246.0 ℃(ただし融点沸点とも異なる実験値あり)。密度は 0.900 g/dm (0 ℃, 1 atm)・液体時は 1.21 g/cm (−246 ℃)。空気中に18.2 ppm含まれ、希ガスとしてはアルゴンに次ぐ割合で存在する。工業的には、空気を液化・分留して作る手段が唯一事業性を持てる。磁化率 −0.334×10 cm/g。1体積の水に溶解する体積比は0.012。 ネオンの三重点(約24.5561 K)はITS-90の定義定点になっている。.

新しい!!: 恒星とネオン · 続きを見る »

ハーバード大学

ハーバード大学(英語: Harvard University)は、アメリカ合衆国の研究型私立大学であり、アイビー・リーグの一校。イギリス植民地時代の1636年に設置された、アメリカ合衆国内において、最も学術的起源の古い高等教育機関である。.

新しい!!: 恒星とハーバード大学 · 続きを見る »

バーナード星

バーナード星 (Barnard's star) とは、太陽系から約6光年の距離に位置する恒星である。 1916年にアメリカの天文学者であるエドワード・エマーソン・バーナードにより発見された。ケンタウルス座α星系に次いで、2番目に太陽系に近い恒星系である。.

新しい!!: 恒星とバーナード星 · 続きを見る »

バイエル符号

バイエル符号(バイエルふごう、Bayer designation。バイエル記号、バイヤー記号、バイエル名などとも)は、ドイツの法律家ヨハン・バイエルが1603年に星図『ウラノメトリア』で発表した、恒星の命名法である。その後、他の天文学者によって追加や修正されたものも同様に「バイエル符号」と呼ばれる。 『ウラノメトリア注解』1697年版(オクラホマ州立大学付属図書館 蔵)より小熊座。第2欄に見えるギリシア文字がバイエル符号。 バイエルは、星座ごとに等級順にギリシャ文字小文字などでα, β, γ, …… と名づけた。これに星座名の属格をつけ、α Centauriのように表す。表し方には次のようなバリエーションがある。.

新しい!!: 恒星とバイエル符号 · 続きを見る »

ヨハン・バイエル

ヨハン・バイエル(Johann Bayer, 1572年 - 1625年3月7日)は、ドイツの法律家。名はヨーハンとも、姓はバイアーともバイヤーとも表記することがある。.

新しい!!: 恒星とヨハン・バイエル · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: 恒星とヘリウム · 続きを見る »

ヘルツシュプルング・ラッセル図

ヘルツシュプルング・ラッセル図 ヘルツシュプルング・ラッセル図(HR図、HRD、Hertzsprung-Russell Diagram)とは、縦軸に絶対等級もしくは光度、横軸にスペクトル型(表面温度)や有効温度をとった恒星の分布図のことである。デンマークの天文学者アイナー・ヘルツシュプルング(Ejnar Hertzsprung)とアメリカの天文学者ヘンリー・ノリス・ラッセル(Henry Norris Russell)により独立に提案された。 この図は、恒星の場所を表すものではないが、恒星進化論を理解するために重要な物である。.

新しい!!: 恒星とヘルツシュプルング・ラッセル図 · 続きを見る »

ヘンリー・ノリス・ラッセル

ヘンリー・ノリス・ラッセル(Henry Norris Russell、1877年10月25日 – 1957年2月18日)は、アメリカ合衆国の天文学者、1910年にアイナー・ヘルツシュプルングと独立にヘルツシュプルング・ラッセル図(HR図、Hertzsprung-Russell diagram)を提案した。 ニューヨークに生まれて、プリンストン大学などで学んだ。1905年にプリンストン大学に戻り、1912年から1947年に引退するまでプリンストン大学天文台の所長を務めた。 1927年にレイモンド・スミス・ドゥーガン(Raymond Smith Dugan)、ジョン・クインシー・スチュワート(John Quincy Stewart)と共著で『 Astronomy: A Revision of Young’s Manual of Astronomy』 (Ginn & Co., Boston, 1926–27, 1938, 1945)を著し、これは長年にわたって、天文学の標準的な教科書となった。.

新しい!!: 恒星とヘンリー・ノリス・ラッセル · 続きを見る »

ヘンリー・ドレイパーカタログ

ヘンリー・ドレイパーカタログ (Henry Draper Catalogue、HD、HDカタログ) とは、地球から見える225,000個以上の明るい恒星についての天文学的および分光学的データを集めた星表(天体カタログ)である。 このカタログは1918年から1924年にかけて第1版が出版された。エドワード・ピッカリングの監修の下でアニー・ジャンプ・キャノンとハーバード大学天文台の同僚によって編集され、未亡人を通して資金を寄付したヘンリー・ドレイパーの名前が冠された。 このカタログには、肉眼で見える限界の約50分の1の明るさを持つ9等星までの恒星が収められた。このカタログは全天をカバーしたもので、初めて星をスペクトル分類ごとに分けたものとして評価されている。.

新しい!!: 恒星とヘンリー・ドレイパーカタログ · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 恒星とブラックホール · 続きを見る »

プレアデス星団

プレアデス星団(プレアデスせいだん、)は、おうし座の散開星団である。メシエカタログでの名称はM45。和名はすばる。 肉眼でも輝く5–7個の星の集まりを見ることができる。双眼鏡で観測すると数十個の青白い星が集まっているのが見える。比較的近距離にある散開星団であるため狭い範囲に小さな星が密集した特異な景観を呈しており、このため昔から多くの記録に登場し、各民族で星座神話が作られてきた。 1769年にメシエカタログの45番に加えられた。メシエカタログは3回に分けて刊行されたが、M45は1回目のカタログに記載された最後の天体である。 約6千万-1億歳と若い年齢の青白い(高温の)星の集団である。核融合の反応速度が速いため寿命は比較的短いと予想されている。星団を構成する星の周囲に広がるガスが青白く輝いているのは、星々とは元々関係のない星間ガスが星団の光を反射しているためである。.

新しい!!: 恒星とプレアデス星団 · 続きを見る »

プロキオン

プロキオン(Procyon)は、こいぬ座α星、こいぬ座で最も明るい恒星で全天21の1等星の1つ。おおいぬ座のシリウス、オリオン座のベテルギウスともに、冬の大三角を形成している。また、冬のダイヤモンドを形成する恒星の1つでもある。.

新しい!!: 恒星とプロキオン · 続きを見る »

パルサー

パルサー(pulsar)は、パルス状の可視光線、電波、X線を発生する天体の総称。.

新しい!!: 恒星とパルサー · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

新しい!!: 恒星とパーセク · 続きを見る »

デネブ

デネブ (Deneb) は、はくちょう座α星、はくちょう座で最も明るい恒星で全天21の1等星の1つ。こと座のベガ、わし座のアルタイルとともに、夏の大三角を形成している。夏を代表する恒星の1つ。 西暦10000年の前後数世紀には、北極星になると予測されている。.

新しい!!: 恒星とデネブ · 続きを見る »

フラウンホーファー線

フラウンホーファー線(フラウンホーファーせん)は、一連のスペクトルで、ドイツの物理学者ヨゼフ・フォン・フラウンホーファーの名前に由来する。太陽光の可視光スペクトルのなかに暗線として観測された。 1802年、イギリスのウイリアム・ウォラストンが、太陽光のスペクトルのなかにいくつかの暗線の存在を報告した。1814年にフラウンホーファーは、ウォーラストンとは別に、暗線を発見し、系統的な研究を行い、570を超える暗線について波長を計測した。主要な線にAからKの記号をつけ、弱い線については別の記号をつけた。 グスタフ・キルヒホフとロベルト・ブンゼンによって、それぞれの線が、太陽の上層に存在するいろいろな元素や地球の大気中の酸素などによって吸収されたスペクトルであることが示された。 他の恒星のドップラー効果によるフラウンホーファー線の波長のズレを調べることで、その恒星と太陽系との相対速度を知ることができる。 下表に主なフラウンホーファー線の記号と波長を示す。 C-、 F-、 G'-、 h- 線は水素のバルマー系列 である。 D3線は光球の光に見られる吸収線(暗線)ではなく、彩層の光に見られるヘリウムの発光線(輝線)であり、1868年8月18日の皆既日食のときロッキヤーによって発見された。.

新しい!!: 恒星とフラウンホーファー線 · 続きを見る »

フェルミ縮退

フェルミ縮退(フェルミしゅくたい、Fermi degeneracy『理化学英和辞典』 研究社(1999年))とは、フェルミ粒子がフェルミ分布に従うために低温で示す振る舞いのこと。 フェルミ粒子はパウリの排他原理により、複数の粒子が同一の状態を取ることができない。従って、あるエネルギーの値を取れる粒子の数は、そのエネルギーの状態の数までが限界である。温度、すなわち粒子の平均運動エネルギーを下げていくと、粒子はエネルギーの低い状態へ移っていこうとする。しかし、エネルギーの低い状態がこの粒子数の限界に達してしまうと、エネルギーが高いままで残らざるを得ないことになる。このような状態になることを、フェルミ縮退もしくは単に縮退という。 粒子の密度が高ければ、粒子数の限界に達しやすくなるので、フェルミ縮退が起こりやすくなる。恒星の中心核は超高密度であるため、数億Kという高温でありながら、フェルミ縮退が起こることがある。 フェルミ縮退している物質を縮退物質(degenerate matter)と呼ぶ。以下にその物性を示す。.

新しい!!: 恒星とフェルミ縮退 · 続きを見る »

ドップラー効果

ドップラー効果(ドップラーこうか、Doppler effect)またはドップラーシフト(Doppler shift)とは、波(音波や電磁波など)の発生源(音源・光源など)と観測者との相対的な速度の存在によって、波の周波数が異なって観測される現象をいう。.

新しい!!: 恒星とドップラー効果 · 続きを見る »

ニュートン (雑誌)

『ニュートン』(Newton)は、ニュートンプレスから刊行されている日本の月刊科学雑誌。 2015年6月現在、発売日は毎月26日(26日が日曜日の場合は25日)、定価は本体1,111円+税。.

新しい!!: 恒星とニュートン (雑誌) · 続きを見る »

ベテルギウス

ベテルギウス(Betelgeuse)は、オリオン座α星、オリオン座の恒星で全天21の1等星の1つ。おおいぬ座のシリウス、こいぬ座のプロキオンとともに、冬の大三角を形成している。.

新しい!!: 恒星とベテルギウス · 続きを見る »

ベガ

ベガ(ヴェガ、Vega ヴィーガまたは ヴェィガ)は、こと座α星、こと座で最も明るい恒星で全天21の1等星の1つ。七夕のおりひめ星(織女星(しょくじょせい))としてよく知られている。わし座のアルタイル、はくちょう座のデネブとともに、夏の大三角を形成している。.

新しい!!: 恒星とベガ · 続きを見る »

分子雲

イータカリーナ星雲の分子雲 分子雲(Molecular cloud)は星雲の一種であり、その大部分は水素分子である。星形成が行われている場合は、育星場、星のゆりかごとも言う。典型的な分子雲の大きさは、直径が100万光年、質量は太陽の10万倍、温度は25K(-248℃)程度、密度は水素分子が10~100万個/cm。 低温の水素分子は放射を出さず検出が難しいため、しばしば一酸化炭素輝線を用いて水素分子ガスの総質量を決定する。ここで一酸化炭素輝線の光度と水素分子ガスの質量の比は一定と仮定されているものの、この比の値は場所によってばらつきがある 。.

新しい!!: 恒星と分子雲 · 続きを見る »

分光器

分光器(ぶんこうき、Spectrometer)は、一般には光の電磁波スペクトルを測定する光学機器の総称である。分光器によって得られるスペクトルは、横軸に電磁波の波長又は光のエネルギーに比例した物理量(例えば波数、周波数、電子ボルト)を用い、縦軸には光の強度や強度から導かれる物理量(偏光度)が用いられる。例えば、分光学において、原子や分子の線スペクトルを測定し、その波長と強度を測定するのに用いられる。 分光器という用語は遠赤外からガンマ線・エックス線といった広範囲に渡って、このような目的で用いられる光学機器一般に用いられる。それぞれのエネルギー領域(X線・紫外・可視・近赤外・赤外・遠赤外)においては異なった技術が用いられるので、一つ一つの分光器には、用いることができる特定の領域がある。 光の領域より長波長(マイクロ波、などの電波領域)においてはスペクトラムアナライザが同様の働きをする。.

新しい!!: 恒星と分光器 · 続きを見る »

りゅうこつ座

りゅうこつ座(りゅうこつざ、竜骨座、Carina)は、南天の星座の1つ。 α星は、全天21の1等星の中で2番目に明るく、カノープスと呼ばれる。 α星カノープス以外にもβ星、ニセ十字を構成する星など、明るい星がかなり多いが、南天の比較的高緯度にあるため、西日本で北の端がわずかに見える程度である。一方、南半球では華やかに夜空を彩り、みなみじゅうじ座やケンタウルス座らと共に代表的な星座となっている。 ほ座のδ星とκ星、りゅうこつ座ι星とε星を結ぶと十字架の形になるので、これらの星たちはみなみじゅうじ座と見誤りやすい。このためこの4星を「ニセ十字」と呼ぶ。またニセ十字とみなみじゅうじ座の間に「Diamond Cross」というアステリズムを有する。これは、θ星とβ星を結んだ縦線とυ星とω星を結んだ横線を組み合わせたものである。.

新しい!!: 恒星とりゅうこつ座 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 恒星とアメリカ航空宇宙局 · 続きを見る »

アークトゥルス

アークトゥルス(Arcturus)は、うしかい座α星、うしかい座で最も明るい恒星で全天21の1等星の1つである赤色巨星。太陽を除き実視等級がマイナスとなる4つの恒星の1つ。.

新しい!!: 恒星とアークトゥルス · 続きを見る »

アイナー・ヘルツシュプルング

アイナー・ヘルツシュプルング (Ejnar Hertzsprung, 1873年10月8日 Frederiksborg生 - 1967年10月21日 Tollose没)はデンマーク生まれの天文学者である。恒星の絶対等級とスペクトル型(表面温度)のをとった分布図(ヘルツシュプルング・ラッセル図)をヘンリー・ノリス・ラッセルと独立に提案した。.

新しい!!: 恒星とアイナー・ヘルツシュプルング · 続きを見る »

ウォルフ・ライエ星

ウォルフ・ライエ星( -せい、WR型星、WR star、Wolf-Rayet star)とは、特殊なスペクトルを持つ天体で、青色巨星である。 1867年にフランスのシャルル・ウォルフとジョルジュ・ライエ によって、直視分光器で初めて発見される。ウォルフ・ライエ星のスペクトルは、通常の恒星に見られるような水素などの吸収線は見られず、ヘリウムや炭素、窒素などの非常に幅の広い輝線が見られるのが特徴である。 主な例として、ほ座γ星、WR 104、R136a1、HD 5980などがある.

新しい!!: 恒星とウォルフ・ライエ星 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 恒星とエネルギー · 続きを見る »

オリオン大星雲

リオン大星雲(オリオンだいせいうん、M42、NGC 1976)は、オリオン座の三つ星付近に存在する散光星雲である。.

新しい!!: 恒星とオリオン大星雲 · 続きを見る »

オリオン座ガンマ星

リオン座γ星は、オリオン座の恒星で2等星。.

新しい!!: 恒星とオリオン座ガンマ星 · 続きを見る »

カペラ (恒星)

ペラ (Capella) は、ぎょしゃ座α星、ぎょしゃ座で最も明るい恒星で全天21の1等星の1つ。冬のダイヤモンドを形成する恒星の1つでもある。 肉眼では、一つの恒星に見えるが、実は2つの恒星から成る連星が2組ある4重連星である。主星となる連星系はカペラAと呼ばれ、両者共にスペクトル型がG型の黄色巨星で、カペラAaとカペラAbと呼ばれる分光連星である。2つの恒星は0.76au離れていて、極めて円に近い軌道を約106日で公転している。カペラAaはスペクトル型がG8III型で、AbはG0III型になっている。光度ではAaの方が明るいが、表面温度はAbの方が高い。質量はそれぞれ、太陽の約3.05倍と約2.57倍である。この2つの恒星は、核融合反応を終えた巨星になっているが、巨星の進化過程において、現在、どの過程にあるかは分かっていない。 伴星となる連星系は、カペラAから約1万au離れた位置にあり、赤色矮星同士から成る、暗い連星系である。それぞれの恒星はカペラHとカペラLと呼ばれる。カペラAbは「カペラB」とも呼ばれる。しかし、カペラCからGと、IからKの名称がつく恒星は偶然、カペラの近くに見える、見かけの二重星で、全て連星系とは無関係の恒星である。.

新しい!!: 恒星とカペラ (恒星) · 続きを見る »

カノープス

ノープス(Canopus)は、りゅうこつ座α星、りゅうこつ座で最も明るい恒星で全天21の1等星の1つ。太陽を除くとシリウスに次いで全天で2番目に明るい恒星である。.

新しい!!: 恒星とカノープス · 続きを見る »

ガス

とは.

新しい!!: 恒星とガス · 続きを見る »

キロメートル

メートル(kilometre、米国のみ1977年以降 kilometer、記号:km)は、国際単位系 (SI) の長さの単位で、1000 メートルに等しい。 km の記号は、長さのSI基本単位であるメートル m に 103 倍を表すSI接頭辞であるキロ k を付けたものである。 ヘクトメートル ≪ キロメートル ≪ メガメートル.

新しい!!: 恒星とキロメートル · 続きを見る »

ギリシア神話

リシア神話(ギリシアしんわ、ΜΥΘΟΛΟΓΊΑ ΕΛΛΗΝΙΚΉ)は、古代ギリシアより語り伝えられる伝承文化で、多くの神々が登場し、人間のように愛憎劇を繰り広げる物語である。ギリシャ神話とも言う。 古代ギリシア市民の教養であり、さらに古代地中海世界の共通知識でもあったが、現代では、世界的に広く知られており、ギリシャの小学校では、ギリシャ人にとって欠かせない教養として、歴史教科の一つになっている。 ギリシア神話は、ローマ神話の体系化と発展を促進した。プラトーン、古代ギリシアの哲学や思想、ヘレニズム時代の宗教や世界観、キリスト教神学の成立など、多方面に影響を与え、西欧の精神的な脊柱の一つとなった。中世においても神話は伝承され続け、その後のルネサンス期、近世、近代の思想や芸術にとって、ギリシア神話は霊感の源泉であった。.

新しい!!: 恒星とギリシア神話 · 続きを見る »

クラウディオス・プトレマイオス

André_Thevet作。 クラウディオス・プトレマイオス(Κλαύδιος Πτολεμαῖος, Claudius Ptolemaeus, 83年頃 - 168年頃)は、数学、天文学、占星学、音楽学、光学、地理学、地図製作学など幅広い分野にわたる業績を残した古代ローマの学者。エジプトのアレクサンドリアで活躍した。『アルマゲスト』、『テトラビブロス』、『ゲオグラフィア』など、古代末期から中世を通して、ユーラシア大陸の西半分のいくつかの文明にて権威とみなされ、また、これらの文明の宇宙観や世界観に大きな影響を与えた学術書の著者である。英称はトレミー (Ptolemy)。.

新しい!!: 恒星とクラウディオス・プトレマイオス · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 恒星とケルビン · 続きを見る »

ケルビン・ヘルムホルツ機構

ルビン・ヘルムホルツ機構(ケルビン・ヘルムホルツきこう、Kelvin-Helmholtz mechanism)は、恒星や惑星の表面の温度が下がった時に生じる天文学的過程である。冷えることによって圧力が低下し、結果として恒星や惑星は縮む。しかし今度は、この収縮によって、恒星や惑星の核の温度は上昇する。木星、土星及び中心部の温度が核融合を起こすほど高くない褐色矮星では、この機構が存在する証拠が得られている。木星は、この機構によって、太陽から受けるよりも多くのエネルギーを放射していると推定されるが、土星はそうではないと考えられている。 この機構は、19世紀末にケルビン卿として知られるウィリアム・トムソンとヘルマン・フォン・ヘルムホルツによって、太陽のエネルギー源を説明するために提案された。19世紀中頃、エネルギー保存の法則が受け入れられ、この法則の帰結の1つとして、太陽が輝き続けるためには、何らかのエネルギー源が必要という問題が持ち上がった。核反応が未知であったため、太陽エネルギーの源の主要候補は、重力収縮であると考えられた。 しかし、すぐにアーサー・エディントンらにより、地質学的や生物学的な証拠により地球の年齢が数十億歳であるのに対して、この機構によって得られるエネルギー量では、太陽は数百万年しか輝けないことが明らかとされた。太陽エネルギーの真の源については、1930年代にハンス・ベーテが核融合によるものであることを明らかにするまでは、不明なままであった。.

新しい!!: 恒星とケルビン・ヘルムホルツ機構 · 続きを見る »

ケンタウルス座アルファ星

ンタウルス座α星は、ケンタウルス座で最も明るい恒星で全天21の1等星の1つ。.

新しい!!: 恒星とケンタウルス座アルファ星 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 恒星とケイ素 · 続きを見る »

コロナ

1999年8月11日の皆既日食で見られたコロナ コロナ (Corona) とは、太陽の周りに見える自由電子の散乱光のこと。もしくは、太陽表面にあるもっとも外縁にある電気的に解離したガス層。「太陽コロナ」との呼び方もある。.

新しい!!: 恒星とコロナ · 続きを見る »

シュテファン=ボルツマンの法則

ュテファン.

新しい!!: 恒星とシュテファン=ボルツマンの法則 · 続きを見る »

シリウス

リウス(Sirius)は、おおいぬ座で最も明るい恒星で全天21の1等星の1つで、太陽を除けば地球上から見える最も明るい恒星である。視等級は-1.46等で、シリウスに次いで明るいカノープスのほぼ2倍の明るさである。バイエル符号における名称は「おおいぬ座α星」である。オリオン座のベテルギウス、こいぬ座のプロキオンともに、冬の大三角を形成している。冬のダイヤモンドを形成する恒星の1つでもある。肉眼では1つの恒星に見えるが、実際には、シリウスAと呼ばれるA型主系列星と、シリウスBと呼ばれる白色矮星から成る連星である。シリウスBのシリウスAからの距離は8.2~31.5auの間で変化する。 シリウスは近距離にあるうえ、自身の光度も大きいため、肉眼でも明るく見える。ヒッパルコス衛星の観測によって得られた年周視差の値に基づくと、地球との距離は約8.6光年(約2.6パーセク)となる。その距離から、地球に近い恒星の一つである。シリウスは、太陽系に接近しているので、今後6万年の間に、わずかに明るさが増す。それ以降は、太陽系から離れていき、明るさは暗くなっていくが、少なくとも今後21万年間は、全天で最も明るい恒星でありつづけるとされている。 主星のシリウスAは、太陽の約2倍の質量を持ち、絶対等級は1.42等である。光度は太陽の約25倍にもなるが、カノープスやリゲルなどと比べると小さい。年齢は2億年から3億年ほどと推定されている。かつてシリウスは明るい2つの恒星から成る連星系だったが、より質量が大きいシリウスBが先に寿命を迎え、1億2000万年前には赤色巨星になった。シリウスBはその後、外層を失い、現在の白色矮星になったとされている。 シリウスはまた、おおいぬ座にあることから、Dog Starとも呼ばれている。なお、古代エジプトでは、ナイル川の氾濫時期を知らせてくれる星として、非常に重要な働きをしていた(エジプト神話・ナイル川およびソプデトも参照)。また、南半球のポリネシア人は太平洋上の航海において、冬の到来を示す重要な役目を果たした。.

新しい!!: 恒星とシリウス · 続きを見る »

ジョン・フラムスティード

ョン・フラムスティード(John Flamsteed, 1646年8月19日 - グレゴリオ暦1719年1月12日(ユリウス暦1718年12月31日))は、イギリスの天文学者。ケンブリッジ大学に学ぶ。フラムスチードと表記されることも多い。 1666年と1668年に起きた日食を正確に予言した。これらの功績が認められ、1675年3月4日、初代の「イングランド王室天文官 (Astronomer Royal for England)」に任命される。給料は年100ポンド。同年6月、任地のグリニッジ天文台はフラムスティード本人の手により工事が開始される。しかし、この天文台は完成後も観測器具はおかれず、フラムスティードは自費で器具を揃えた。足りない分は給料から、それでも足りない分は、副業で家庭教師をしたり、寄付でまかなった。観測器具の設計に当たっては、ティコ・ブラーエの著書を参考にし、それを望遠鏡用に改変した。フラムスティード本人はティコにちなんで自らを「宮廷付占星術師」と呼んだが、この呼称は普及しなかった。代わりに人は彼をグリニッジ天文台長と呼んだ。このため、現代のイギリス英語でも王室天文官 (Astronomer Royal) はそのままグリニッジ天文台長を指す称号として使われた。(なお、1970年代以降、王室天文官とグリニッジ天文台長が別人の時代が存在するため、この2語は正確には同義ではない) 1676年2月、王立協会フェローとなる。同年、サリーのバーストー教区僧侶となりそこに住む。1684年、グリニッジに移住。 アイザック・ニュートンは、『自然哲学の数学的諸原理』(1687年)の出版にあたり、フラムスティードの観測記録を要求した。フラムスティードはこれに答えて記録を送ったが、この観測記録はニュートンの理論に合わず、ニュートンはフラムスティードが観測記録を送ってくるのが遅く、さらに故意に誤った記録を送ってきたとして非難した。しかし、実際には、地球と月の関係はニュートンの考えたような単純な2つの質点間の関係では表せず、もっと違う要素が必要なことがニュートンの死後に判明する。 フラムスティードは観測記録を『天球図譜』として出版しようと試みるが、ニュートンとエドモンド・ハレーは、フラムスティードの仕事が遅く、完成の見込みがないと判断して、新しい観測記録ではなく、手元にあったフラムスティードの古い不正確な観測記録を元に勝手に王立協会版『天球図譜』を1712年に出版した。フラムスティードは裁判に訴え、勝訴した。王立協会版『天球図譜』の在庫はすべてフラムスティードに渡され、フラムスティードはグリニッジ天文台でこれを焼却した。また、フラムスティードは、図書館等が購入した王立協会版『天球図譜』も可能な限り回収して焼却した。これでニュートンとの決裂は決定的なものとなった。ニュートンは、『自然哲学の数学的諸原理』第2版から、フラムスティードの名をほとんど削除した。 王立協会の協力が得られないと知ったフラムスティードは、自費で『天球図譜』の発刊を試みるが、生前には出版できなかった。これは没後、1725年から1729年にかけて、フラムスティード夫人らによって刊行された。 1719年、グリニッジにて死す。1720年、サリーのバーストーに葬られた。.

新しい!!: 恒星とジョン・フラムスティード · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 恒星とスペクトル · 続きを見る »

スペクトル分類

ペクトル分類(スペクトルぶんるい、spectral classification)は、恒星の分類法の一つである。スペクトル分類によって細分された星のタイプをスペクトル型 (spectral type) と呼ぶ。恒星から放射された電磁波を捉え、スペクトルを観察することによって分類する。恒星のスペクトルはその表面温度や化学組成により変わってくる。表面温度により分類する狭義のスペクトル型(ハーバード型とも)と、星の本来の明るさを示す光度階級 (luminosity class) があり、両者を合わせて2次元的に分類するMKスペクトル分類が広く使われる。.

新しい!!: 恒星とスペクトル分類 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 恒星と光 · 続きを見る »

光崩壊

光崩壊 (英: Photodisintegration) は非常に高エネルギーのガンマ線が原子核に作用することによって原子が崩壊する過程のこと。高エネルギーのガンマ線は光子ともよばれ、ここから光崩壊と呼ばれ、光壊変や光分解ともよばれる。原子核がガンマ線を受けることで励起状態になることが原因であり、原子核を構成する陽子や中性子を放出することで即座に崩壊する。原子核の中に侵入したガンマ線によって一粒の陽子や中性子が効果的に叩きだされる。 この過程は本質的には軽い元素が高温で融合して重い元素を生成し、エネルギーを解放する核融合とは逆の過程である。光崩壊は原子核が鉄より軽い時は吸熱性であり、原子核が鉄より重い時には放熱を行う。光崩壊は少なくとも超新星で起きるp過程を通して生成される重く陽子に富んだ元素の一部を合成する原因である。.

新しい!!: 恒星と光崩壊 · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: 恒星と光年 · 続きを見る »

固有運動

固有運動(こゆううんどう、proper motion)とは天体(主に恒星)の天球上の位置の移動を指す名称である。(固有運動には方向の変化のみを含み、奥行方向の運動(視線速度)は考慮しない。)固有運動は、以下のような「その星固有のものでない運動」を除いた後の位置変化を指す。これらは天体の位置を観測した際の座標値に影響を与えるが、天体自身の真の運動ではない。.

新しい!!: 恒星と固有運動 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: 恒星と理想気体 · 続きを見る »

理想気体の状態方程式

想気体の状態方程式(りそうきたいのじょうたいほうていしき、)とは、気体の振る舞いを理想化した状態方程式である。なお、理想気体はこの状態方程式に従うが、その振る舞いは状態方程式だけでは決まらず、比熱容量の定数性が要求される。 熱力学温度 、圧力 の下で、物質量 の理想気体が占める体積 が で与えられる。ここで係数 はモル気体定数である。 この式が理想気体の状態方程式であり、ボイルの法則、シャルルの法則と体積の示量性から導かれる。 実在気体の場合は、気体は近似的にこの方程式に従い、式の有効性は気体の密度が0に近づき(低圧になり)、かつ高温になるにつれて高まる。密度が0に近付けば、分子の運動に際し、お互いがぶつからずに、分子自身の体積が無視できるようになる。また、 高温になることによって、分子の運動が高速になり、分子間力(ファンデルワールス力)が無視出来るようになるからである。.

新しい!!: 恒星と理想気体の状態方程式 · 続きを見る »

秒 (角度)

角度の単位としての秒(びょう、arcsecond, second of arc (SOA))は、分の1/60の角度である。時間における秒の用法から転じたものである。 1秒は1度の1/3600である。1度が円弧の1/360であるので、1秒は円弧の である。1ラジアンは約 である。 mas は、1秒の1/1000を表わす単位である。milliarcsecond に由来する。秒では単位として大きすぎる場合(恒星の年周視差や固有運動を表わすときなど)に用いられる。.

新しい!!: 恒星と秒 (角度) · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 恒星と窒素 · 続きを見る »

等級 (天文)

天文学において等級(とうきゅう、magnitude)とは、天体の明るさを表す尺度である。整数または小数を用いて「1.2等級」あるいは省略して「1.2等」などと表す。恒星の明るさを表す場合には「2等星」などと呼ぶ場合もある。等級の値が小さいほど明るい天体であることを示す。また、0等級よりも明るい天体の場合の明るさを表すには負の数を用いる。 等級が1等級変わると明るさは100の5乗根倍、すなわち約2.512倍変化する。よって等級差が5等級の場合に明るさの差が正確に100倍となる。言い換えれば等級とは天体の明るさを対数スケールで表現したものである。.

新しい!!: 恒星と等級 (天文) · 続きを見る »

絶対等級

絶対等級(ぜったいとうきゅう)とは、天体が仮に我々から見てある基準となる距離にあったとしたときの、その天体の視等級(見かけの等級、m)である。絶対等級を用いると、天体までの距離を考えないで、色々な天体の明るさを比較することが出来る。.

新しい!!: 恒星と絶対等級 · 続きを見る »

熱エネルギー

熱エネルギー(ねつエネルギー、Thermal energy)とは、物質の内部エネルギーのうち物質を構成する原子や分子の熱運動によるエネルギーを指し、ある温度での物質の内部エネルギーから絶対零度における内部エネルギーを差し引いたもの、或いは原子や分子の温度によるエネルギーを指すことになる。この概念は物理学や熱力学において明確に定義されておらず、幅広く受け入れられていない。これは、内部エネルギーは温度を変化させることなく変化させることができ、系の内部エネルギーのどの部分が「熱」に由来するのかを区別する方法がないためである。英語の は系の(全)内部エネルギーといったより厳密な熱力学量、熱、エネルギーの「伝達」の一種として定義される顕熱(仕事がエネルギーの伝達の一種であるのと同じ)の同義語として大ざっぱに使われることがある。熱と仕事はエネルギー伝達の手段に依存するが、内部エネルギーは系の状態の性質であり、したがってエネルギーがどのようにしてそこに着いたかを知らなくても理解することができる。.

新しい!!: 恒星と熱エネルギー · 続きを見る »

熱放射

熱放射(ねつほうしゃ、thermal radiation)は、伝熱の一種で、熱が電磁波として運ばれる現象。または物体が熱を電磁波として放出する現象をさす。熱輻射(ねつふくしゃ)、あるいは単に輻射ともいう。 熱を運ぶ過程には大きく分けて次の三通りがある。.

新しい!!: 恒星と熱放射 · 続きを見る »

白色矮星

白色矮星(はくしょくわいせい、white dwarf)は、恒星が進化の終末期にとりうる形態の一つ。質量は太陽と同程度から数分の1程度と大きいが、直径は地球と同程度かやや大きいくらいに縮小しており、非常に高密度の天体である。 シリウスの伴星(シリウスB)やヴァン・マーネン星など、数百個が知られている。太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている。.

新しい!!: 恒星と白色矮星 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 恒星と銀河系 · 続きを見る »

青色巨星

青色巨星(せいしょくきょせい、blue giant)は、光度階級III (巨星) またはII (輝巨星) でスペクトルがO型またはB型の恒星。高温のために青く見える。.

新しい!!: 恒星と青色巨星 · 続きを見る »

褐色矮星

褐色矮星(かっしょくわいせい、英:brown dwarf)とは、その質量が木星型惑星より大きく、赤色矮星より小さな超低質量天体の分類である。軽水素 (H) の核融合を起こすには質量が小さすぎるために恒星になることができない天体。.

新しい!!: 恒星と褐色矮星 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 恒星と質量 · 続きを見る »

超巨星

超巨星(ちょうきょせい、supergiant)は、太陽よりはるかに大きく明るい恒星のこと。明るさは青色超巨星の場合は太陽の1万倍(全エネルギー放射で太陽の10万倍)以上、赤色超巨星の場合は太陽の数千倍(同3万倍)以上ある。また、直径は青色超巨星で太陽の数十倍以上、赤色超巨星では太陽の数百倍以上はある。最も巨大な恒星は、最近までおおいぬ座VY星と言われていた。 2012年の時点で直径がそれなりの精度でわかっている中では、太陽の1650倍ほどであるはくちょう座V1489星が最も大きな恒星となっている。.

新しい!!: 恒星と超巨星 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

新しい!!: 恒星と超新星 · 続きを見る »

超新星残骸

プラーの超新星SN 1604の超新星残骸の多波長合成画像 大マゼラン雲の超新星残骸N49の多波長合成画像 超新星残骸(ちょうしんせいざんがい、supernova remnant、SNR)は、恒星が超新星爆発した後に残る構造である。超新星残骸は、爆発により拡張する衝撃波によって区切られ、恒星からの噴出物と星間物質によって構成される。 恒星が超新星爆発に至るには主に2つの道がある。.

新しい!!: 恒星と超新星残骸 · 続きを見る »

距離

距離(きょり、Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。.

新しい!!: 恒星と距離 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

新しい!!: 恒星と黒体放射 · 続きを見る »

黒色矮星

黒色矮星(こくしょくわいせい、black dwarf)とは、白色矮星が冷えて電磁波による観測が不可能となった天体のことである。仮説上の天体であり、実際の存在は確認されていない。質量が太陽の8倍程度以下の恒星が最終的に行き着く先として想定されている。.

新しい!!: 恒星と黒色矮星 · 続きを見る »

輝巨星

輝巨星(ききょせい、Bright giant)は、光度階級IIの恒星である。これらは巨星から超巨星にまたがる大きさであるが、通常は超巨星ほど明るく重いわけではなく、極めて明るい巨星に分類される。 輝巨星に分類される有名な恒星には、次のようなものがある。.

新しい!!: 恒星と輝巨星 · 続きを見る »

輝線星雲

輝線星雲(きせんせいうん、emission nebula)はさまざまな色の光を放出している電離ガスからなる天体である。ガスを電離するエネルギー源として最も典型的なものは星雲の近くにある高温の恒星から放出される高エネルギーの光子である。光源となる恒星がO型やB型のような若い大質量星の場合には星雲はHII領域と呼ばれ、古い白色矮星の場合には惑星状星雲と呼ばれるが、発光の機構はどちらもほぼ同じである。.

新しい!!: 恒星と輝線星雲 · 続きを見る »

近い恒星の一覧

近い恒星の一覧(ちかいこうせいのいちらん)では地球近傍にある恒星を距離の近い順に列挙する。 肉眼で見ることができない恒星は名称の項目部分をグレーで示す。地球に近いといえどもほとんどが暗い星(赤色矮星など)だからである。スペクトル分類の項目では恒星のおおよその色を示す。連星の場合は総合的な名称と個々の名称に分けてある。年周視差と距離の部分が赤字の場合は予備的な測定値であることを示す。 なお、この数値は長い時間の経過とともに変化し、およそ136万年後にはグリーゼ710が太陽から1.1光年まで接近する。 半径14光年以内の星々 注記:これら近傍の恒星までの距離は年周視差によって割り出され、主にRECONS(:en:Research Consortium on Nearby Stars)による。その他の情報は以下の通り。 略語:.

新しい!!: 恒星と近い恒星の一覧 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 恒星と赤外線 · 続きを見る »

赤色巨星

赤色巨星(せきしょくきょせい、red giant)とは、恒星が主系列星を終えたあとの進化段階である。大気が膨張し、その大きさは地球の公転軌道半径から火星のそれに相当する。肉眼で観察すると赤く見えることから、「赤色」巨星と呼ばれる。厳密には「赤色巨星」と「漸近巨星分枝星」と二つの進化段階に分かれている。赤色巨星という言葉は時によって、狭義の赤色巨星のみを指す場合と、漸近巨星分枝星も含めた広義を指す場合とがある。.

新しい!!: 恒星と赤色巨星 · 続きを見る »

赤色矮星

赤色矮星のイメージ 赤色矮星(せきしょくわいせい、red dwarf)とは、主系列星の中で特に小さい恒星のグループ。主にスペクトル型M型の主系列星を指すが、低温のK型主系列星の一部を含めることもある。.

新しい!!: 恒星と赤色矮星 · 続きを見る »

赤色超巨星

赤色超巨星(せきしょくちょうきょせい、red supergiant star)とは、直径が太陽の数百倍から1,000倍以上あり、明るさは太陽の数千倍以上(全エネルギー放射は太陽の3万倍以上)ある恒星のこと。 赤色巨星のうち光度・質量の大きいもの、あるいは超巨星のうち表面温度が低いものともいえる。不安定で脈動変光星となっているものが多いが、赤色超巨星の脈動変光星は規則性のあるものがSRC型、規則性のないものがLC型と分類されている。 赤色超巨星のうち質量が太陽の十倍以上のものについては、超新星爆発の後に中性子星もしくはブラックホールになると考えられる。 赤色超巨星の物理的性質については赤色巨星及び超巨星を参照のこと。 本項では主な赤色超巨星の一覧を掲げる。.

新しい!!: 恒星と赤色超巨星 · 続きを見る »

脈動変光星

脈動変光星(みゃくどうへんこうせい、pulsating variable)は、膨張と収縮を繰り返すことにより、または星の形状が変化すること(非動径脈動)により明るさが変化する変光星のこと。変光星総合カタログ (GCVS) では、その変光周期及び規則性により以下のように分類している。.

新しい!!: 恒星と脈動変光星 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 恒星と重力 · 続きを見る »

重力崩壊

重力崩壊のメカニズムのモデル 重力崩壊(じゅうりょくほうかい)は、末期の恒星が自らの重力に耐え切れずに崩壊する物理現象。 恒星は重力によって中心部に向かって凝縮している一方で、プラズマの熱運動や電気的な反発力によって一定の大きさを保っている。核融合が進むと原子量の小さい原子核が無くなることによって核融合が停止し、反発力が衰える。それによって恒星はより凝縮され、再び核融合が始まれば凝縮が止まる。しかし、中心部が鉄で占められるようになると(鉄の原子核は最も安定なため、これ以上の核融合は起こらない)、今度は鉄がガンマ線を吸収しヘリウムと中性子に分解される光崩壊が起こることになる。すると、星の中心部は空洞と同じ状態になり、今度は周りの物質が急激に中心へ落ち込み圧縮される。この圧縮により中心部にコアができ、そのコアで反射した衝撃波が外部へ広がり、星が崩壊する。これが重力崩壊であり、II型の超新星爆発である。 中心部の圧縮されたコアは、ブラックホールまたは中性子星となる。 また、理論予想としては、さらに核子が融解してクォークが剥き出しになるクォーク星の存在が考えられている。 Category:コンパクト星 Category:重力.

新しい!!: 恒星と重力崩壊 · 続きを見る »

重力ポテンシャル

重力ポテンシャル()とは、ニュートン力学において、重力による質量あたりの位置エネルギーである。すなわち、空間内の位置へ質点を動かす際に重力が質点に行う質量あたりの仕事の符号を変えたものに等しい。 静電ポテンシャルとの類推で電荷の役割を質量が果たす。通常は無限の遠方を重力ポテンシャルの基準点(重力ポテンシャルが0となる点)として選び、有限の距離では重力ポテンシャルは常に負値をとる。 数学では、重力ポテンシャルはとも呼ばれ、ポテンシャル論の研究において基本的である。.

新しい!!: 恒星と重力ポテンシャル · 続きを見る »

金星

金星(きんせい、Venus 、 )は、太陽系で太陽に近い方から2番目の惑星。また、地球に最も近い公転軌道を持つ惑星である。 地球型惑星であり、太陽系内で大きさと平均密度が最も地球に似た惑星であるため、「地球の姉妹惑星」と表現されることがある。また、太陽系の惑星の中で最も真円に近い公転軌道を持っている。 地球から見ると、金星は明け方と夕方にのみ観測でき、太陽、月についで明るく見える星であることから、明け方に見えるのが「明けの明星」、夕方に見えるのが「宵の明星」という。.

新しい!!: 恒星と金星 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 恒星と酸素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 恒星と鉄 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 恒星と英語 · 続きを見る »

連星

連星(れんせい、)とは2つの恒星が両者の重心の周りを軌道運動している天体である。双子星(ふたごぼし)とも呼ばれる。連星は、地球から遠距離にあると、一つの恒星と思われ、その後に連星である事が判明する場合もある。この2世紀間の観測で、肉眼で見える恒星の半数以上が連星である可能性が示唆されている。通常は明るい方の星を主星、暗い方を伴星と呼ぶ。また、3つ以上の星が互いに重力的に束縛されて軌道運動している系もあり、そのような場合にはn連星またはn重連星などと呼ばれる。 また、二重星という言葉も連星を示す場合が多い。しかし、実際には、複数の恒星が地球から見て、同じ方向に位置しており、「見かけ上、連星のように見える」場合を表す。それぞれの恒星の、地球からの距離は全く異なり、物理的にも何の関連性も無い。二重星は、距離が異なるので、光度の差から、年周視差や視線速度を正確に求める事が出来る。しかし、中にはアルビレオのように、二重星か真の連星かが分かっていないものもある。.

新しい!!: 恒星と連星 · 続きを見る »

G型主系列星

太陽はG型主系列星の典型例である。 G型主系列星の想像図 G型主系列星(Gがたしゅけいれつせい)とは、スペクトル型がG型、光度階級がVの恒星(主系列星)のこと。黄色矮星(おうしょくわいせい)、G Vとも呼ばれる。太陽はG型主系列星の一つである。.

新しい!!: 恒星とG型主系列星 · 続きを見る »

HEAO-2

HEAO-2(High Energy Astrophysical Observatories-2)、またはアインシュタイン観測機(Einstein Observatory)はX線ミラーを積んだ初のX線天文衛星。NASAのHEOA計画の2機目。1978年11月13日に打ち上げられた。 打ち上げ前にHEAO Bと名づけられ、予定軌道に達した後、アルベルト・アインシュタインに因み、アインシュタイン観測機と改名された。1982年3月25日、大気圏再突入。.

新しい!!: 恒星とHEAO-2 · 続きを見る »

K型主系列星

K型主系列星(Kがたしゅけいれつせい)とは、スペクトル型がK型、光度階級がVの恒星(主系列星)のこと。橙色矮星とも呼ばれる。.

新しい!!: 恒星とK型主系列星 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 恒星とX線 · 続きを見る »

X線バースター

X線バースター(Xせんバースター、X-ray burster)は、X線連星の種類の1つで、X線域にピークを持つ光度が周期的で高速に増大(通常は10倍以上)するものである。これらの連星は、融合しつつあるコンパクト星、通常は中性子星かブラックホールとドナーとなる恒星から構成される。ドナーとなる恒星の質量は、系を分類する基準として用いられる。質量が10太陽質量以上、または1太陽質量以下の場合は、それぞれHMXB、LMXBと呼ばれる。X線バースターは、X線パルサーやsoft X-ray transient等の他の一時的なX線源とは見かけが異なり、1秒から10秒のシャープな立ち上がり時間の後に、冷えたブラックホールに特徴的なスペクトルの軟化が続く。それぞれのバーストのエネルギー流束は1039-40erg程度で、中性子星上の降着円盤の1037ergに匹敵する。バーストの流束と通常の流束の比自体はαの文字で表され、10から1000の範囲であるが、通常は100の桁である。X線バーストでは、数時間から数日の間隔で系の質量のほとんどを放出するが、5-20分という短い間隔のものも観測される。XRBという略称は、X線バースターという天体とX線バーストという天文現象の両方を意味する。.

新しい!!: 恒星とX線バースター · 続きを見る »

X線観測衛星

X線観測衛星(えっくすせんかんそくえいせい)とは、宇宙由来のX線を観測するための宇宙望遠鏡のこと。.

新しい!!: 恒星とX線観測衛星 · 続きを見る »

恒星の一覧

以下は恒星の一覧(lists of stars)である。; 場所による一覧:; 距離等による一覧:; 物理的な性質による一覧:; その他の星のリスト.

新しい!!: 恒星と恒星の一覧 · 続きを見る »

恒星天文学

恒星天文学(こうせいてんもんがく)は、天文学の一分野で、恒星について研究する学問である。.

新しい!!: 恒星と恒星天文学 · 続きを見る »

恒星内部物理学

恒星内部物理学(こうせいないぶぶつりがく)は、恒星の内部を物理学的手法を用いて研究する学問である。.

新しい!!: 恒星と恒星内部物理学 · 続きを見る »

恒星物理学

恒星物理学(こうせいぶつりがく)とは、恒星の物理学的な性質についての研究を行う学問のこと。天体物理学の一分野であると同時に、恒星天文学の一分野でもある。.

新しい!!: 恒星と恒星物理学 · 続きを見る »

恒星風

恒星風(こうせいふう)あるいは単に星風(せいふう)とは、恒星表面から吹き出すガスの流れのことである。太陽からも太陽風という形で常時ガスが放出されており、太陽フレアの際には太陽風の速度が上昇する。 恒星は自分自身の重力によってガスを保持している。しかし表面でガスの圧力や輻射圧(光圧)、磁気的な圧力などが高くなることによって一部のガスが重力を振り切って恒星から放出される。 おうし座T型星においては、主系列星に移行する途中のある時期に急激に恒星風が強くなり周囲のガスを吹き飛ばすと考えられている。 赤色巨星の表面においては重力が弱いために容易にガスが放出される。そのため赤色巨星が恒星風として放出する質量は太陽よりも数万倍も多い。 また大質量星においては星の表面が高温であるためガスの圧力や輻射圧が高く恒星風が強い。このような星が恒星風によって水素の外層を失ったと考えられるのがウォルフ・ライエ星である。.

新しい!!: 恒星と恒星風 · 続きを見る »

恒星進化論

天体物理学において恒星進化論(こうせいしんかろん、英語:stellar evolution)とは、恒星の誕生から最期までにおこる恒星内の構造の変化を扱う理論である。 恒星進化論においては、恒星を生物になぞらえてその誕生から最期までを恒星の一生とし、幼年期の星、壮年期の星、老年期の星、星の死といった用語を用いる。恒星進化論の中で用いられている進化も生物になぞらえた言葉であるが、生物の進化とは異なり、世代を超えた変化ではなく恒星の一生の中での変化を表している。 恒星は自分自身の重力があるので常に収縮しようとする。しかし、収縮すると重力によるポテンシャルエネルギーが熱に変わる。また充分に高温高圧になれば核融合反応が起こり熱が発生する。これらの熱によってガスの温度が上昇すればガスは膨張しようとする。このようにして収縮と膨張が釣り合ったところで恒星は安定している。重力と核融合によるエネルギーを使い果たすと、恒星は収縮をとどめることができず最期を迎える。 以下に現在の恒星進化論による恒星の一生を示す。.

新しい!!: 恒星と恒星進化論 · 続きを見る »

東京大学

記載なし。

新しい!!: 恒星と東京大学 · 続きを見る »

核融合反応

核融合反応(かくゆうごうはんのう、nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。.

新しい!!: 恒星と核融合反応 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 恒星と水素 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 恒星と気体 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 恒星と温度 · 続きを見る »

準巨星

準巨星(じゅんきょせい、subgiant、subgiant star)とは、同じスペクトル型の通常の主系列星よりやや明るく、巨星ほどは明るくない恒星の分類の1つである。ある種の準巨星は、金属の多い水素核融合星であるが(同様に準矮星は金属量が少なく、比較的暗い水素核融合星である)、これらは核での水素核融合が終わっているかほぼ終わりかけていると考えられる。質量はほぼ太陽質量程度であり、そのため核は収縮し、核の外でも水素核融合が起こるほど温度が高くなる。この過程で星は膨張し、真の巨星になる。 プロキオンAのような準巨星の最初の段階にある恒星は半径や光度が増加するが、この時点では温度が低下したり色が大きく変わったりすることはない。巨星に近い後期の段階の準巨星は、主系列の同じような質量の恒星と比べ、半径が大きく温度は低い。主系列星と比べ、準巨星の段階で全体的な光度はほとんど変わらない。この特徴は、球状星団のヘルツシュプルング・ラッセル図で顕著である。多くの準巨星は金属に富み、一般的には惑星を持つ。一部はこれらの理由のため、また準巨星の段階は数十億年続くため、準巨星は主系列星以外では生命の存在する惑星を持つと考えられる唯一の分類である。スペクトル分類ではIVに分類される。.

新しい!!: 恒星と準巨星 · 続きを見る »

準矮星

準矮星 (Subdwarf star, subdwarf, sd) とは、光度階級がVIに分類される天体のことである。具体的には、同一のスペクトル型(≒温度)を持つ主系列星と比べて、絶対等級にして1.5から2暗い(光度にして1/4から1/6)天体と定義されている。ヘルツシュプルング・ラッセル図では主系列星の帯のすぐ下に位置し、成因からcool subdwarfとhot subdwarfに大別できる。 準矮星という言葉を使い始めたのはジェラルド・カイパーで、1939年のことだった。それまでこの種の異常なスペクトルを持つ天体は「intermediate white dwarfs」と呼ばれていた。.

新しい!!: 恒星と準矮星 · 続きを見る »

満月

Schmidt-Cassegrainを通して見ました。 月はその最大の北部黄道緯度の近くにあったので、南のクレーターは特に顕著です。 満月(まんげつ)とは、月と太陽の黄経差が180度となること、あるいはその瞬間。これを望(ぼう)ともいう。またこの時に見られる月の形をも指す。これを望月(ぼうげつ・もちづき)、盈月(えいげつ)ともいう。月齢は13.8〜15.8であることが多く、平均では14.8である。月相は14。太陰暦では15日か16日であることが多いので、満月の日の晩を十五夜とも呼んだ。満月は、ほぼ日没とともに東の空に昇り、明け方には西の空に沈むこれ以降は月の出がおよそ50分ずつ遅くなる(即ち新月では、太陽と同じく朝に出てきて夕方には沈む)。。.

新しい!!: 恒星と満月 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: 恒星と朝倉書店 · 続きを見る »

木星

記載なし。

新しい!!: 恒星と木星 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: 恒星と月 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 恒星と惑星 · 続きを見る »

惑星状星雲

星雲 惑星状星雲(わくせいじょうせいうん、planetary nebula)は、超新星にならずに一生を終える恒星が赤色巨星となった際に放出したガスが、中心の星の放出する紫外線に照らされて輝いているものである。中心の星は恒星の進化において白色矮星になる前の段階である 。 惑星状星雲の名は、望遠鏡で観測したときに緑がかった惑星のように見えるところから、ウィリアム・ハーシェルによって名付けられた。 恒星は、一生の末期になると外層が膨張して赤色巨星となり、外層のガスは徐々に恒星の重力を振り切って周囲に放出されていき、原始惑星状星雲となる。一方、中心核は自分自身の重力で収縮し紫外線を放射し、この紫外線が赤色巨星であった時に放出したガスに吸収されると、ガスはそのエネルギーによって電離して光を放って輝くようになる。これが惑星状星雲である。 惑星状星雲のスペクトルは、主に電離ガスから放たれる輝線スペクトルであり、散光星雲にも見られる水素、ヘリウムのバルマー系列(可視域においては)再結合輝線や衝突励起輝線を持つ。これは、電離窒素や電離酸素の確率の低い電子遷移に対応する輝線(禁制線)である。惑星状星雲のガスは極めて希薄であり、原子間の衝突がめったに起こらないために、励起状態の失活が起こらずこれらの輝線が観測できる。.

新しい!!: 恒星と惑星状星雲 · 続きを見る »

星座

星座(せいざ、constellation)は、複数の恒星が天球上に占める見かけの配置を、その特徴から連想したさまざまな事物の名前で呼んだものである。古来さまざまな地域・文化や時代に応じていろいろなグループ化の方法や星座名が用いられた。 左は北半球、右は南半球の星座.

新しい!!: 恒星と星座 · 続きを見る »

明るい恒星の一覧

明るい恒星の一覧(あかるいこうせいのいちらん)は地球から見た視等級順の恒星の一覧である。.

新しい!!: 恒星と明るい恒星の一覧 · 続きを見る »

新星出版社

株式会社新星出版社(しんせいしゅっぱんしゃ)は、東京都台東区に本社を置く、日本の出版社である。資格試験問題集・生活実用書などを刊行している。.

新しい!!: 恒星と新星出版社 · 続きを見る »

放射

放射(ほうしゃ,radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつての日本では、輻射(ふくしゃ)とされていたが、太平洋戦争後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。.

新しい!!: 恒星と放射 · 続きを見る »

散光星雲

散光星雲(さんこうせいうん、英語:diffuse nebula)とは、可視光によって観測できる比較的広い範囲に広がったガスや宇宙塵のまとまりである天体。 散光星雲とは古い用語であり、輝線星雲を指したり、輝線星雲と反射星雲、更には暗黒星雲や超新星残骸まで含める場合もあり、混乱を避けるためこの用語は使用すべきではない。.

新しい!!: 恒星と散光星雲 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »