ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

準同型

索引 準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

31 関係: 可換体同型写像同値関係対数射 (圏論)交換法則二項演算代数的構造位相同型位相空間位相群圏論マグマ (数学)ベクトル空間アーベル群写像等長写像算法線型写像群論環上の加群環論順序体順序集合自己同型自己準同型自己準同型環零元連続写像核 (代数学)数学的構造

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 準同型と可換体 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 準同型と同型写像 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 準同型と同値関係 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 準同型と対数 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 準同型と射 (圏論) · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 準同型と交換法則 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 準同型と二項演算 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 準同型と代数的構造 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 準同型と位相同型 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 準同型と位相空間 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: 準同型と位相群 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 準同型と圏論 · 続きを見る »

マグマ (数学)

抽象代数学におけるマグマ(magma)または亜群(あぐん、)は、演算によって定義される種類の基本的な代数的構造であり、集合 M とその上の二項演算 M × M → M からなる組をいう。マグマ M における二項演算は M において閉じていることは要求するが、それ以外の何らの公理も課すものではない。 このような構造に対して「マグマ」という呼称を導入したのはニコラ・ブルバキであるフランス語で "magma" は(複数の意味があるが)「ゴチャゴチャ」「支離滅裂」であるという意味である。フランスの数学者集団であるブルバキが「二項演算が定義されているだけの集合」にマグマと名づけて言及したのは、(群や環とは違い)そのような取り留めの無い広範な概念にどのような整理をつけて扱えばよいかわからないといったことが念頭にあってのことであろう。。旧来はオイステイン・オアによる用語で亜群()と呼ばれていたもので、現在でもしばしばそのように呼ばれる。ただし、それとは別に圏論において「亜群()」と呼ばれる概念があるので、それと混同してはならない。.

新しい!!: 準同型とマグマ (数学) · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 準同型とベクトル空間 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 準同型とアーベル群 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 準同型と写像 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: 準同型と等長写像 · 続きを見る »

算法

n 項算法(エヌこうさんぽう)とは、広義には、集合 A の直積集合 An の部分集合 D から A への写像 f のことをいい、D をこの算法の定義域という。n は任意の順序数でよい。 これを(仮に)f の項数とよぶ。 An は i < n をみたす順序数 i を添数とする A の元の族 (ai)i<n すべてからなる集合を表す。 集合 A とそこにおける算法の族 R との組み (A, R) を代数系という。.

新しい!!: 準同型と算法 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 準同型と線型写像 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 準同型と群論 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 準同型と環上の加群 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: 準同型と環論 · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 準同型と順序体 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 準同型と順序集合 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 準同型と自己同型 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: 準同型と自己準同型 · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: 準同型と自己準同型環 · 続きを見る »

零元

数学において、零元(れいげん、ぜろげん)とは、.

新しい!!: 準同型と零元 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 準同型と連続写像 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 準同型と核 (代数学) · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 準同型と数学的構造 · 続きを見る »

ここにリダイレクトされます:

ホモモルフィズムホモモーフィズムアイソモーフィズムイソモルフィズムイソモーフィズム凖同型準同型写像

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »