ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

不動点定理

索引 不動点定理

数学における不動点定理(ふどうてんていり、fixed-point theorem)は、ある条件の下で自己写像 は少なくとも 1 つの不動点 ( となる点 )を持つことを主張する定理の総称を言う。不動点定理は応用範囲が広く、分野を問わず様々なものがある。.

45 関係: Annals of Mathematics偏微分方程式偶奇性単調写像反復合成写像完備束対合不動点不動点コンビネータ三角関数一階述語論理二個の平方数の和代数的位相幾何学区間 (数学)チャーチ=チューリングのテーゼバナッハの不動点定理バナッハ空間ラムダ計算レフシェッツ不動点定理ボレルの不動点定理ブラウワーの不動点定理ブルバキ・ヴィットの定理プログラミング言語フラクタル圧縮ニールセンの不動点定理アティヤ=ボットの不動点定理カリスティの不動点定理クリーネの再帰定理グラフ (関数)シャウダーの不動点定理再帰無名関数無限次元空間における不動点定理静的コード解析順序集合順序数表示的意味論角谷の不動点定理計算可能性理論閉集合集合論連続 (数学)抽象解釈有限集合数学

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: 不動点定理とAnnals of Mathematics · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 不動点定理と偏微分方程式 · 続きを見る »

偶奇性

数学における偶奇性(ぐうきせい、parity; パリティ)とは、ある対象を偶(ぐう、even)と奇(き、odd)の二属性のいずれか一方に排することである。しばしば、ふたつ(以上)の対象に対して、それらの偶奇性が一致しないことを以って、それらが相異なるということの理由付けとするというような議論に用いられる場合がある。 同様の性質を示す概念に「正負」があるが、正負には(しばしば特異なものを表す)零をあわせた三属性とする場合もある。.

新しい!!: 不動点定理と偶奇性 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 不動点定理と単調写像 · 続きを見る »

反復合成写像

数学における写像の反復適用および反復合成(はんぷくごうせい、iteration)は、同じ写像を繰り返し適用すること(繰り返してもよい)、および同じ写像同士で合成を繰り返すことをいう。またそうして得られた写像は、もとの写像の反復合成写像 (iterated function) あるいは合成冪 (power) と呼ぶ。適当な対象を初期値として、それに反復合成写像を適用して得られる値の列は、初期値の軌道 (orbit) と言う。 反復合成は計算機科学、フラクタル、力学系など、あるいは数学および繰り込み群の物理学において研究の対象となる。.

新しい!!: 不動点定理と反復合成写像 · 続きを見る »

完備束

数学の一分野における完備束(complete lattice)とは部分集合が常に上限と下限を持つ半順序集合のことである。 完備束は束の重要な例で順序集合論及び普遍代数の研究対象であり、数学及び計算機科学に多くの応用を持つ。 には様々な異なる定義があるので注意を要する(例えば完備半順序 (CPO) は完備束とは異なる概念である)。特に重要な完備束のクラスとしてや (locale) がある。.

新しい!!: 不動点定理と完備束 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 不動点定理と対合 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 不動点定理と不動点 · 続きを見る »

不動点コンビネータ

不動点コンビネータ(ふどうてんコンビネータ、fixed point combinator、不動点結合子、ふどうてんけつごうし)とは、与えられた関数の不動点(のひとつ)を求める高階関数である。不動点演算子(ふどうてんえんざんし、fixed-point operator)、パラドキシカル結合子(paradoxical combinator)などとも呼ばれる。ここで関数fの不動点とは、f(x).

新しい!!: 不動点定理と不動点コンビネータ · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 不動点定理と三角関数 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: 不動点定理と一階述語論理 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: 不動点定理と二個の平方数の和 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 不動点定理と代数的位相幾何学 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: 不動点定理と区間 (数学) · 続きを見る »

チャーチ=チューリングのテーゼ

チャーチ=チューリングのテーゼ (Church-Turing thesis) もしくはチャーチのテーゼ (Church's thesis) とは、「計算できる関数」という直観的な概念を、帰納的関数と呼ばれる数論的関数のクラスと同一視しようという主張である。テーゼの代わりに提唱(ていしょう)あるいは定立(ていりつ)の語が用いられることもある。このクラスはチューリング・マシンで実行できるプログラムのクラス、ラムダ記法で定義できる関数のクラスとも一致する。よって簡単にはテーゼは、計算が可能な関数とは、その計算を実行できるような有限のアルゴリズムが存在するような関数、よっておおよそコンピュータで実行できる関数と同じだと主張する。.

新しい!!: 不動点定理とチャーチ=チューリングのテーゼ · 続きを見る »

バナッハの不動点定理

数学におけるバナッハの不動点定理(バナッハのふどうてんていり、)は、距離空間の理論において重要な役割を担う不動点定理であり、縮小写像の定理あるいは縮小写像の原理としても知られる。この定理はある自己写像の不動点の存在と一意性を保証するものであり、そのような不動点の構成法を提供するものである。1922年に初めて提唱したステファン・バナッハ(1892-1945)の名にちなむ。.

新しい!!: 不動点定理とバナッハの不動点定理 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 不動点定理とバナッハ空間 · 続きを見る »

ラムダ計算

ラムダ計算(ラムダけいさん、lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(evaluation)と適用(application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論など、計算機科学のいろいろなところで使われており、特にLISP、ML、Haskellといった関数型プログラミング言語の理論的基盤として、その誕生に大きな役割を果たした。 ラムダ計算は1つの変換規則(変数置換)と1つの関数定義規則のみを持つ、最小の(ユニバーサルな)プログラミング言語であるということもできる。ここでいう「ユニバーサルな」とは、全ての計算可能な関数が表現でき正しく評価されるという意味である。これは、ラムダ計算がチューリングマシンと等価な数理モデルであることを意味している。チューリングマシンがハードウェア的なモデル化であるのに対し、ラムダ計算はよりソフトウェア的なアプローチをとっている。 この記事ではチャーチが提唱した元来のいわゆる「型無しラムダ計算」について述べている。その後これを元にして「型付きラムダ計算」という体系も提唱されている。.

新しい!!: 不動点定理とラムダ計算 · 続きを見る »

レフシェッツ不動点定理

数学で、レフシェッツ不動点定理(Lefschetz fixed-point theorem)は、コンパクトな位相空間 X からそれ自身への連続写像の不動点の数を、X のホモロジー群の上の誘導された写像のトレースによって数える公式である。この名称はソロモン・レフシェッツ(Solomon Lefschetz)にちなみ、1926年に彼が最初に提唱した。 数え上げの問題は、不動点と呼ばれる点での多重度も考慮して不動点を数える問題である。この定理の弱いバージョンは、全く不動点を持たない写像は、むしろ特別のトポロジー的(円の回転に似た)性質を持つことを示すことができる。.

新しい!!: 不動点定理とレフシェッツ不動点定理 · 続きを見る »

ボレルの不動点定理

数学において、ボレルの不動点定理(ボレルのふどうてんていり、)とは、の一般化である代数幾何学における不動点定理である。 によって証明された。.

新しい!!: 不動点定理とボレルの不動点定理 · 続きを見る »

ブラウワーの不動点定理

ブラウワーの不動点定理(ブラウワーのふどうてんていり、)は、位相幾何学における不動点定理で、ライツェン・ブラウワーの名にちなむ。この定理では、コンパクト凸集合からそれ自身への任意の連続函数 f に対して、f(x0).

新しい!!: 不動点定理とブラウワーの不動点定理 · 続きを見る »

ブルバキ・ヴィットの定理

数学においてブルバキ・ヴィットの定理(ブルバキ・ヴィットのていり、Bourbaki–Witt theorem)は、半順序集合に関する基本的な不動点定理であり、ニコラ・ブルバキとエルンスト・ヴィットの名に因む。この定理は、(X, \preceq) が空でない半順序集合であって、任意の全順序部分集合に上限が存在するとき、 が を満たせば、 は不動点を持つことを述べている。.

新しい!!: 不動点定理とブルバキ・ヴィットの定理 · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: 不動点定理とプログラミング言語 · 続きを見る »

フラクタル圧縮

フラクタル圧縮(フラクタルあっしゅく、fractal compression)とは、に基づいた高い圧縮率を達成する静止画像の非可逆圧縮手法である。自然の風景写真名称から木、山、シダ、雲など、フラクタル的特徴のある画像に向いている印象があるが、実装上の問題からフラクタル的特徴からの影響を受け難くなっている。でもいわゆるアニメ絵でも同様に圧縮できる。 復号はほぼ線形時間で可能であるが符号化は計算量が非常に多く、改良や研究はそれなりに行われているにもかかわらず1990年代後半以降は特に改善されたとの話もないこと、および特許による制約があることから商業的関心は薄い。.

新しい!!: 不動点定理とフラクタル圧縮 · 続きを見る »

ニールセンの不動点定理

数学におけるニールセンの不動点定理(ニールセンのふどうてんていり、)は、位相幾何学的な不動点定理に関する数学の一結果である。核となるアイデアはデンマークの数学者であるによって考えられたもので、定理の名も彼にちなむ。 コンパクト空間からそれ自身への写像 f のいわゆる極小数 (minimal number) の研究において、ニールセンの理論は展開された。そのような極小数 MF は次で定義される: ここで ~ は写像がホモトピックであることを意味し、#Fix(g) は g の不動点の数を表す。ニールセンの時代において極小数を計算することは非常に困難であったが、それは今日でも変わらない。ニールセンの手法は、不動点の集合を、ホモトピーによって除去可能かどうかで「本質的」か「本質的ではない」かの二種類に分類するものであった。 ニールセンの元々の理論では、次の様な概念が導入された:空間 X 上の自己写像 f の不動点の集合について同値関係を定義する。x が y と同値であるとは、x から y への c で、f(c) が c と道としてホモトピックであるようなものが存在することを言う。この関係についての同値類は f のニールセン類(Nielsen class)と呼ばれ、の和がゼロでないニールセン類の数をニールセン数 N(f) とする。 ニールセンは次の不等式を証明した。 このことより、計算の難しい MF を評価することが可能となった。これより、現在ニールセンの不動点定理として知られる次の定理が直ちに従う:任意の写像は少なくとも N(f) 個の不動点を持つ。 に関する定義より、ニールセン数はレフシェッツ数と密接に関連している。実際、ニールセンの仕事のすぐ後、これら二つの不変量はウェッケンとによって「一般化レフシェッツ数」として一つにまとめられた。これは、より最近ではライデマイスター跡 (Reidemeister trace) とも呼ばれる。.

新しい!!: 不動点定理とニールセンの不動点定理 · 続きを見る »

アティヤ=ボットの不動点定理

数学におけるアティヤ=ボットの不動点定理(アティヤ=ボットのふどうてんていり、)とは、1960年代にマイケル・アティヤとラウル・ボットによって証明された定理で、滑らかな多様体 M に対するレフシェッツの不動点定理の一般化として、M 上の楕円型複体を扱うものである。これはベクトル束上の楕円型微分作用素の系で、元々のレフシェッツの不動点定理において現れる滑らかな微分形式から構成されるド・ラーム複体を一般化するものである。.

新しい!!: 不動点定理とアティヤ=ボットの不動点定理 · 続きを見る »

カリスティの不動点定理

リスティの不動点定理(カリスティのふどうてんていり、)あるいはカリスティ=カークの不動点定理(Caristi-Kirk fixed-point theorem)と呼ばれる定理は、数学において、バナッハの不動点定理を完備距離空間からそれ自身への写像に対して一般化するものである。カリスティの不動点定理は、(1974,1979)の ε-を少し変えたものである。また、カリスティの定理の結論が距離完備性と同値であることは Weston (1977) によって示された。元々の結果は、数学者ジェームス・カリスティとによるものである。.

新しい!!: 不動点定理とカリスティの不動点定理 · 続きを見る »

クリーネの再帰定理

リーネの再帰定理(クリーネのさいきていり、)は再帰理論における2つの基本的な結果である。この定理によれば計算可能関数をそれ自身を用いて記述することができる。この定理は1938年にスティーブン・コール・クリーネによって最初に証明された。1952年の彼の著作 Introduction to Metamathematics において見られる。 2つの再帰定理は幾つかの計算可能関数の不動点の構成に利用できる。例えばクワインの生成や関数の帰納的定義などである。任意の再帰的関数の不動点構成への応用はロジャースの定理として知られる。これは (Rogers, 1967) による。.

新しい!!: 不動点定理とクリーネの再帰定理 · 続きを見る »

グラフ (関数)

関数のグラフ(graph)は、直観的には、関数を平面内の曲線もしくは空間内の曲面としてダイアグラム状に視覚化したものである。形式的には、関数 のグラフとは、順序対 の集合である。 例えば、 と が常に実数であるような関数の場合、グラフは座標平面上の点の集まりとみなすことができる。このような関数のうち、応用上重要な関数の多くは、グラフを座標平面上に曲線として描くことが可能である。 グラフの概念は、関数のみならず、より一般の写像や対応に対しても定義される。標語的には、グラフは関数や対応を特徴付ける集合であるといえる。.

新しい!!: 不動点定理とグラフ (関数) · 続きを見る »

シャウダーの不動点定理

数学においてシャウダーの不動点定理(シャウダーのふどうてんていり、)は、ブラウワーの不動点定理を無限次元であることもある線型位相空間に拡張したものである。K を、ハウスドルフ線型位相空間 V の凸部分集合とし、T を K からそれ自身への連続写像で T(K) が K のコンパクト部分集合であるようなものとする。このとき、T は不動点を持つというのが定理の主張である。 その結果として得られるシェファーの不動点定理(Schaefer's fixed point theorem)と呼ばれるものは、偏微分方程式の解の存在を示す上で特に有用となる。シェファーの定理は実際、とによって発見されていたルレイ=シャウダーの定理の特別な場合である。その内容は次のようなものである: T をバナッハ空間 X からそれ自身への連続かつコンパクトな写像で、集合 \ が有界となるようなものとする。このとき T は不動点を持つ。.

新しい!!: 不動点定理とシャウダーの不動点定理 · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: 不動点定理と再帰 · 続きを見る »

無名関数

無名関数(anonymous functionあるいはnameless function)とは、名前付けされずに定義された関数のことである。無名関数を表現するための方法には様々なものがあるが、近年主流となっているのはラムダ式による記法である。無名関数を表現するリテラル式は、関数リテラル (function literal) とも呼ばれる。値がある場合は関数オブジェクトであるものが多い。.

新しい!!: 不動点定理と無名関数 · 続きを見る »

無限次元空間における不動点定理

数学において、ブラウワーの不動点定理の一般化である無限次元空間における不動点定理(むげんじげんくうかんにおけるふどうてんていり、)は数多く存在する。それらは例えば、偏微分方程式の存在定理の証明に応用される。 この分野における第一の結果は、1930年にによって証明されたシャウダーの不動点定理である(別の流派におけるそれ以前の結果として、1922年に証明された完備距離空間における縮小写像に対するバナッハの不動点定理がある)。これ以降、多くの結果が証明された。この種の不動点定理が数学の分野全体に多大な影響を持つこととなった一つの理由は、有限の単体的複体に対してはじめに証明される代数的位相幾何学の手法を、無限次元の空間に対して拡張することの出来る手法の存在であった。例えば、層論を発見したの研究は、シャウダーの業績を拡張することから始まった。 シャウダーの不動点定理: C を、バナッハ空間 V の空でない閉凸部分集合とする。f: C → C がコンパクトな像を持つ連続函数であるなら、f は不動点を持つ。 チホノフの不動点定理: V を局所凸位相ベクトル空間とし、V 内の空でない任意のコンパクト凸集合 X に対して、任意の函数 f: X → X は不動点を持つ。 その他の結果として、マルコフ=角谷の不動点定理(1936-1938)や、コンパクト凸集合の連続自己アフィン写像に対するリル=ナウゼウスキの不動点定理(1967)、開領域の正則自己写像に対する(1968)などがある。 角谷の不動点定理: 局所凸空間のコンパクトな凸部分集合からそれ自身への写像で、像が閉グラフかつ凸で空でないようなすべての対応は、不動点を持つ。.

新しい!!: 不動点定理と無限次元空間における不動点定理 · 続きを見る »

静的コード解析

静的コード解析 (static code analysis) または静的プログラム解析 (static program analysis)とは、コンピュータのソフトウェアの解析手法の一種であり、実行ファイルを実行することなく解析を行うこと。逆にソフトウェアを実行して行う解析を動的プログラム解析と呼ぶ。静的コード解析はソースコードに対して行われることが多く、少数ながらオブジェクトコードに対して行う場合もある。また、この用語は以下に列挙するツールを使用した解析を意味することが多い。人間が行う作業はインスペクション、コードレビューなどと呼ぶ。.

新しい!!: 不動点定理と静的コード解析 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 不動点定理と順序集合 · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 不動点定理と順序数 · 続きを見る »

表示的意味論

表示的意味論(ひょうじてきいみろん、Denotational Semantics)とは、計算機科学(理論計算機科学)の一分野で、プログラミング言語の形式意味論(プログラム意味論)の手法のひとつである。初期には「数理的意味論」(mathematical semantics)、「スコット-ストレイチー意味論」(Scott–Strachey semantics)のようにも呼ばれた。プログラムの意味をあらわす数学的オブジェクト(これを「表示」(denotation)と呼ぶ)を構築することで、プログラミング言語の意味論を形式化する手法である。 表示的意味論の起源は、1960年代のクリストファー・ストレイチーやデイナ・スコットの研究である。ストレイチーやスコットが開発した本来の表示的意味論は、プログラムの表示(意味)を入力を出力にマッピングする関数に変換するものである。後にこれはプログラムの表示(意味)を定義するには非力であることが証明され、例えば再帰定義関数・データ構造を表現できないことが判明した。これを解決するため、スコットはより汎用的な領域理論に基づいた表示的意味論を提案したS.

新しい!!: 不動点定理と表示的意味論 · 続きを見る »

角谷の不動点定理

数学の解析学の分野における角谷の不動点定理(かくたにのふどうてんていり、)は、集合値函数に対する不動点定理である。ユークリッド空間のあるコンパクトな凸部分集合が不動点(すなわちそれを含む集合へ写像される点)を持つための十分条件を与える定理である。角谷の不動点定理は、ブラウワーの不動点定理の一般化である。ブラウワーの不動点定理は、ユークリッド空間のコンパクトな凸部分集合上で定義される連続函数の不動点の存在を示すものであった。角谷の定理はこれを集合値函数に拡張したものである。 この定理は角谷静夫によって1941年に証明され 、ジョン・ナッシュによりナッシュ均衡を表現するために用いられた 。その後、ゲーム理論や経済学における幅広い分野で応用されている。.

新しい!!: 不動点定理と角谷の不動点定理 · 続きを見る »

計算可能性理論

計算可能性理論(けいさんかのうせいりろん、computability theory)では、チューリングマシンなどの計算模型でいかなる計算問題が解けるか、またより抽象的に、計算可能な問題のクラスがいかなる構造をもっているかを調べる、計算理論や数学の一分野である。 計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。.

新しい!!: 不動点定理と計算可能性理論 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 不動点定理と閉集合 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 不動点定理と集合論 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 不動点定理と連続 (数学) · 続きを見る »

抽象解釈

抽象解釈(ちゅうしょうかいしゃく、Abstract interpretation)は、コンピュータプログラムの意味論の健全な近似の理論であり、順序集合(特に束)における単調関数に基づいている。全ての計算を実施することなく、プログラムの部分的な実行(ある種の部分評価)をするものと見ることができ、それによりプログラムの意味に関する情報(例えば、制御構造、情報の流れなど)を獲得する。 主な応用として、形式的な静的コード解析があり、プログラム実行に関する情報を自動抽出するものである。このような解析には次の2つの利用法がある。.

新しい!!: 不動点定理と抽象解釈 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 不動点定理と有限集合 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 不動点定理と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »