ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ブラウワーの不動点定理

索引 ブラウワーの不動点定理

ブラウワーの不動点定理(ブラウワーのふどうてんていり、)は、位相幾何学における不動点定理で、ライツェン・ブラウワーの名にちなむ。この定理では、コンパクト凸集合からそれ自身への任意の連続函数 f に対して、f(x0).

54 関係: 基本群単連結空間境界 (位相空間論)対応巡回群不動点定理一般均衡位相同型位相幾何学微分幾何学微分方程式ナッシュ均衡ハウスドルフ空間バナッハの不動点定理バナッハ空間ポアンカレ・ベンディクソンの定理ヤコビ行列ユークリッド空間ライツェン・エヒベルトゥス・ヤン・ブラウワーレトラクト (位相幾何学)レフシェッツ不動点定理ヒルベルト空間ホモロジー (数学)ベクトル場アンリ・ポアンカレエミール・ピカールケネス・アローゲーム理論コンパクト空間シャウダーの不動点定理ジャック・アダマールジョルダン曲線定理ジェラール・ドブルー円板写像度凸集合全単射全射回転数 (数学)球体球面群準同型終域無限次元空間における不動点定理特異ホモロジー角谷の不動点定理距離空間閉集合連続 (数学)連結空間...逆函数定理Lp空間PlanetMath沈め込み インデックスを展開 (4 もっと) »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: ブラウワーの不動点定理と基本群 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: ブラウワーの不動点定理と単連結空間 · 続きを見る »

境界 (位相空間論)

一般位相において位相空間 X の部分集合 S の境界(きょうかい、boundary, frontier)とは、S の中からも外からも近づくことのできる点の全体の成す X の部分集合のことである。もうすこし形式的に言えば、S の触点(閉包に属する点)のうち、S の内点(開核に属する点)ではないものの全体の成す集合のことである。S の境界に属する点のことを、S の境界点(boundary point) と呼ぶ。S が境界を持たない (boundaryless) とは、S が自身の境界を包含しないこと、あるいは同じことだが境界点がひとつも S に属さないことをいう。集合 S の境界を表すのに、bd(S), fr(S), ∂S最初のふたつはそれぞれ boundary, frontier の省略形からきている(が、省略の仕方は変えてもいいし省略しなくてもいい)。これ以外の記法としては、松坂では frontier の頭文字を右肩に載せる Sf を用いている。内部 (interior).

新しい!!: ブラウワーの不動点定理と境界 (位相空間論) · 続きを見る »

対応

対応は、.

新しい!!: ブラウワーの不動点定理と対応 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: ブラウワーの不動点定理と巡回群 · 続きを見る »

不動点定理

数学における不動点定理(ふどうてんていり、fixed-point theorem)は、ある条件の下で自己写像 は少なくとも 1 つの不動点 ( となる点 )を持つことを主張する定理の総称を言う。不動点定理は応用範囲が広く、分野を問わず様々なものがある。.

新しい!!: ブラウワーの不動点定理と不動点定理 · 続きを見る »

一般均衡

一般均衡(いっぱんきんこう,general equilibrium)とは、ミクロ経済学、特に価格理論のアプローチのひとつ。主として1つの財の市場における価格と需給量の決定をあつかう「部分均衡分析」に対し、多くの財をふくむ市場全体における価格と需給量の同時決定をあつかう理論を「一般均衡分析」と呼ぶ(ただし、部分均衡は注目する財以外をまとめて一つの財として捉え、明示的ではないがその均衡を考えていることになるため、一般均衡分析でもある)。レオン・ワルラスが1870年代に創始し、パレートによって継承され発展したローザンヌ学派が確立し、1950年代にケネス・アロー、ジェラール・ドブルー、ライオネル・マッケンジー、二階堂副包らの貢献により現在の整合的な分析手法となった。 消費者や生産者がすべての財の価格を与えられたものとして行動する完全競争市場の一般均衡モデルは、消費者や生産者の効用関数や生産関数を特定化しなくても、凸解析や不動点定理などでかなりの分析が可能な数学的に優れた構造を持つ。すべての財の市場の需給が一致する競争均衡価格の存在定理や、競争均衡における資源配分がパレート最適であることを言った「厚生経済学の第一定理」などが、一般均衡分析の重要な定理として知られている。これらの定理は仮定から結論を導く数学的な証明を追うことで理解可能であるが、2財2消費者を図示したエッジワースボックスでも直感的な理解は可能である。 一方、非競争的な市場の分析で、同一市場内で製品差別のない寡占の分析は、完全競争市場の一般均衡ではなく、非協力ゲーム理論によるものが主流になっている。.

新しい!!: ブラウワーの不動点定理と一般均衡 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: ブラウワーの不動点定理と位相同型 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: ブラウワーの不動点定理と位相幾何学 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: ブラウワーの不動点定理と微分幾何学 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: ブラウワーの不動点定理と微分方程式 · 続きを見る »

ナッシュ均衡

ナッシュ均衡(ナッシュきんこう、Nash equilibrium)は、ゲーム理論における非協力ゲームの解の一種であり、いくつかの解の概念の中で最も基本的な概念である。数学者のジョン・フォーブス・ナッシュにちなんで名付けられた。 ナッシュ均衡は、他のプレーヤーの戦略を所与とした場合、どのプレーヤーも自分の戦略を変更することによってより高い利得を得ることができない戦略の組み合わせである。ナッシュ均衡の下では、どのプレーヤーも戦略を変更する誘因を持たない。 ナッシュ均衡は必ずしもパレート効率的ではない。その代表例が囚人のジレンマである。.

新しい!!: ブラウワーの不動点定理とナッシュ均衡 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: ブラウワーの不動点定理とハウスドルフ空間 · 続きを見る »

バナッハの不動点定理

数学におけるバナッハの不動点定理(バナッハのふどうてんていり、)は、距離空間の理論において重要な役割を担う不動点定理であり、縮小写像の定理あるいは縮小写像の原理としても知られる。この定理はある自己写像の不動点の存在と一意性を保証するものであり、そのような不動点の構成法を提供するものである。1922年に初めて提唱したステファン・バナッハ(1892-1945)の名にちなむ。.

新しい!!: ブラウワーの不動点定理とバナッハの不動点定理 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: ブラウワーの不動点定理とバナッハ空間 · 続きを見る »

ポアンカレ・ベンディクソンの定理

数学におけるポアンカレ・ベンディクソンの定理とは、平面上の連続力学系における軌道の大域的構造(閉軌道の存在)に関する定理である。.

新しい!!: ブラウワーの不動点定理とポアンカレ・ベンディクソンの定理 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: ブラウワーの不動点定理とヤコビ行列 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: ブラウワーの不動点定理とユークリッド空間 · 続きを見る »

ライツェン・エヒベルトゥス・ヤン・ブラウワー

ライツェン・エヒベルトゥス・ヤン・ブラウワー(Luitzen Egbertus Jan Brouwer、1881年2月27日 - 1966年12月2日)はオランダの数学者。ブラウエル、ブローウェルなどとも表記される。トポロジーにおいて不動点定理をはじめとする多大な業績を残し、また数学基礎論においては直観主義数学の創始者として知られる。.

新しい!!: ブラウワーの不動点定理とライツェン・エヒベルトゥス・ヤン・ブラウワー · 続きを見る »

レトラクト (位相幾何学)

位相幾何学という数学の分野において,レトラクション (retraction) とは,位相空間から部分空間への,その部分空間の全ての点の位置を保つ連続写像である.変位レトラクション (deformation retraction) は空間を部分空間に「連続的に縮める」という概念を捉える写像である. 絶対近傍レトラクト (absolute neighborhood retract, ANR) は特にタイプの位相空間である.例えば,すべての位相多様体は ANR である.すべての ANR は非常に単純な位相空間,,のホモトピー型を持つ..

新しい!!: ブラウワーの不動点定理とレトラクト (位相幾何学) · 続きを見る »

レフシェッツ不動点定理

数学で、レフシェッツ不動点定理(Lefschetz fixed-point theorem)は、コンパクトな位相空間 X からそれ自身への連続写像の不動点の数を、X のホモロジー群の上の誘導された写像のトレースによって数える公式である。この名称はソロモン・レフシェッツ(Solomon Lefschetz)にちなみ、1926年に彼が最初に提唱した。 数え上げの問題は、不動点と呼ばれる点での多重度も考慮して不動点を数える問題である。この定理の弱いバージョンは、全く不動点を持たない写像は、むしろ特別のトポロジー的(円の回転に似た)性質を持つことを示すことができる。.

新しい!!: ブラウワーの不動点定理とレフシェッツ不動点定理 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ブラウワーの不動点定理とヒルベルト空間 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

新しい!!: ブラウワーの不動点定理とホモロジー (数学) · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: ブラウワーの不動点定理とベクトル場 · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: ブラウワーの不動点定理とアンリ・ポアンカレ · 続きを見る »

エミール・ピカール

ミール・ピカール(Charles Émile Picard、1856年7月24日 - 1941年12月11日)は、フランスの数学者である。パリ出身。ピカールの定理やピカールの逐次近似法等の証明で知られる。.

新しい!!: ブラウワーの不動点定理とエミール・ピカール · 続きを見る »

ケネス・アロー

ネス・ジョセフ・アロー(、1921年8月23日 - 2017年2月21日)は、アメリカ合衆国の経済学者。20世紀経済学史上の最重要人物の一人とされ経済学全般において革命的な論文を書いている。経済学・社会学・政治学など他学問にも影響を与えている。1972年、51歳という史上最年少でノーベル経済学賞を受賞。1973年、アメリカ経済学会会長。.

新しい!!: ブラウワーの不動点定理とケネス・アロー · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: ブラウワーの不動点定理とゲーム理論 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: ブラウワーの不動点定理とコンパクト空間 · 続きを見る »

シャウダーの不動点定理

数学においてシャウダーの不動点定理(シャウダーのふどうてんていり、)は、ブラウワーの不動点定理を無限次元であることもある線型位相空間に拡張したものである。K を、ハウスドルフ線型位相空間 V の凸部分集合とし、T を K からそれ自身への連続写像で T(K) が K のコンパクト部分集合であるようなものとする。このとき、T は不動点を持つというのが定理の主張である。 その結果として得られるシェファーの不動点定理(Schaefer's fixed point theorem)と呼ばれるものは、偏微分方程式の解の存在を示す上で特に有用となる。シェファーの定理は実際、とによって発見されていたルレイ=シャウダーの定理の特別な場合である。その内容は次のようなものである: T をバナッハ空間 X からそれ自身への連続かつコンパクトな写像で、集合 \ が有界となるようなものとする。このとき T は不動点を持つ。.

新しい!!: ブラウワーの不動点定理とシャウダーの不動点定理 · 続きを見る »

ジャック・アダマール

ャック・アダマール ジャック・サロモン・アダマール(Jacques Salomon Hadamard、1865年12月8日 - 1963年10月17日)はフランスの数学者である。1896年に素数定理を証明したことで知られる。.

新しい!!: ブラウワーの不動点定理とジャック・アダマール · 続きを見る »

ジョルダン曲線定理

位相幾何学において、ジョルダン曲線定理(ジョルダンきょくせんていり、)あるいはジョルダンの閉曲線定理(へいきょくせんていり)とは、平面に置かれた自己交差を持たないどんな閉曲線(輪っか)も平面を「内側」と「外側」に分けるということを述べた定理。.

新しい!!: ブラウワーの不動点定理とジョルダン曲線定理 · 続きを見る »

ジェラール・ドブルー

ェラール・ドブルー(Gerard Debreu、1921年7月4日 - 2004年12月31日)は、フランスの経済学者、数学者。数理経済学全般、特に一般均衡理論の研究に関する数理経済学者の代表的人物である。1983年には一般均衡理論の徹底的な改良と経済理論に新たな分析手法を組み込んだことが評価され、ノーベル経済学賞を受賞した。.

新しい!!: ブラウワーの不動点定理とジェラール・ドブルー · 続きを見る »

円板

閉包である。 各種幾何学における円板(えんばん、disk; disc と綴ることもある)は、平面上で円で囲まれた有界領域である。 円板はその境界となる円周を「すべて含む」または「全く含まない」ことを以ってそれぞれ「閉円板」または「開円板」という。.

新しい!!: ブラウワーの不動点定理と円板 · 続きを見る »

写像度

写像度(しゃぞうど、degree)とは、コンパクト、弧状連結、向き付けられた同次元の多様体間での連続写像を特徴付ける整数のこと。写像のホモトピー不変量のひとつである。.

新しい!!: ブラウワーの不動点定理と写像度 · 続きを見る »

凸集合

ユークリッド空間における物体が凸(とつ、convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。.

新しい!!: ブラウワーの不動点定理と凸集合 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: ブラウワーの不動点定理と全単射 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: ブラウワーの不動点定理と全射 · 続きを見る »

回転数 (数学)

数学において、与えられた点の周りの平面の閉曲線の回転数 (winding number) は曲線がその点の周りを反時計回りに周った総回数を表す整数である。回転数はに依存し、曲線が点の周りを時計回りに周れば負の数である。 回転数は代数トポロジーにおいて研究の基本的な対象であり、ベクトル解析、複素解析、幾何学的トポロジー、微分幾何学、弦理論を含む物理、において重要な役割を果たす。.

新しい!!: ブラウワーの不動点定理と回転数 (数学) · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

新しい!!: ブラウワーの不動点定理と球体 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: ブラウワーの不動点定理と球面 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: ブラウワーの不動点定理と群準同型 · 続きを見る »

終域

数学において写像の終域(しゅういき、codomain; 余域)あるいは終集合(しゅうしゅうごう、target set)は、写像を と表すときの集合 、すなわち写像 の出力する値がその中に属するべきという制約を定める集合をいう。終域の代わりに「値域」という語を用いる場合もあるが、値域は写像の像(出力される値すべてからなる集合、 で言えば )の意味で用いることが多いので注意すべきである。.

新しい!!: ブラウワーの不動点定理と終域 · 続きを見る »

無限次元空間における不動点定理

数学において、ブラウワーの不動点定理の一般化である無限次元空間における不動点定理(むげんじげんくうかんにおけるふどうてんていり、)は数多く存在する。それらは例えば、偏微分方程式の存在定理の証明に応用される。 この分野における第一の結果は、1930年にによって証明されたシャウダーの不動点定理である(別の流派におけるそれ以前の結果として、1922年に証明された完備距離空間における縮小写像に対するバナッハの不動点定理がある)。これ以降、多くの結果が証明された。この種の不動点定理が数学の分野全体に多大な影響を持つこととなった一つの理由は、有限の単体的複体に対してはじめに証明される代数的位相幾何学の手法を、無限次元の空間に対して拡張することの出来る手法の存在であった。例えば、層論を発見したの研究は、シャウダーの業績を拡張することから始まった。 シャウダーの不動点定理: C を、バナッハ空間 V の空でない閉凸部分集合とする。f: C → C がコンパクトな像を持つ連続函数であるなら、f は不動点を持つ。 チホノフの不動点定理: V を局所凸位相ベクトル空間とし、V 内の空でない任意のコンパクト凸集合 X に対して、任意の函数 f: X → X は不動点を持つ。 その他の結果として、マルコフ=角谷の不動点定理(1936-1938)や、コンパクト凸集合の連続自己アフィン写像に対するリル=ナウゼウスキの不動点定理(1967)、開領域の正則自己写像に対する(1968)などがある。 角谷の不動点定理: 局所凸空間のコンパクトな凸部分集合からそれ自身への写像で、像が閉グラフかつ凸で空でないようなすべての対応は、不動点を持つ。.

新しい!!: ブラウワーの不動点定理と無限次元空間における不動点定理 · 続きを見る »

特異ホモロジー

数学の一分野である代数トポロジーにおいて、特異ホモロジー (singular homology) とは位相空間 X ののある種の集合、いわゆるホモロジー群 (homology group) H_n(X) の研究のことである。直感的に言えば、特異ホモロジーは、各次元 n に対して、空間の n 次元の穴を数える。特異ホモロジーはホモロジー論の例である。これは今では理論のかなり大きな集まりに成長している。様々な理論の中で、特異ホモロジーはかなり具体的な構成に基づいているのでおそらく理解するのが容易なものの1つである。 手短に言えば、特異ホモロジーは標準 ''n''-単体から位相空間への写像をとり、それらから特異チェイン (singular chain) と呼ばれる形式和を作ることによって構成される。単体上の境界作用素は特異チェイン複体を誘導する。すると特異ホモロジーはそのチェイン複体のホモロジーである。得られるホモロジー群はすべてのホモトピー同値な空間に対して同じであり、これがそれらの研究の理由である。これらの構成はすべての位相空間に対して適用することができるので、特異ホモロジーは圏論の言葉で表現できる。そこではホモロジー群は位相空間の圏から次数付きアーベル群の圏への関手になる。これらのアイデアは以下でもっと詳細に説明される。.

新しい!!: ブラウワーの不動点定理と特異ホモロジー · 続きを見る »

角谷の不動点定理

数学の解析学の分野における角谷の不動点定理(かくたにのふどうてんていり、)は、集合値函数に対する不動点定理である。ユークリッド空間のあるコンパクトな凸部分集合が不動点(すなわちそれを含む集合へ写像される点)を持つための十分条件を与える定理である。角谷の不動点定理は、ブラウワーの不動点定理の一般化である。ブラウワーの不動点定理は、ユークリッド空間のコンパクトな凸部分集合上で定義される連続函数の不動点の存在を示すものであった。角谷の定理はこれを集合値函数に拡張したものである。 この定理は角谷静夫によって1941年に証明され 、ジョン・ナッシュによりナッシュ均衡を表現するために用いられた 。その後、ゲーム理論や経済学における幅広い分野で応用されている。.

新しい!!: ブラウワーの不動点定理と角谷の不動点定理 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: ブラウワーの不動点定理と距離空間 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: ブラウワーの不動点定理と閉集合 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: ブラウワーの不動点定理と連続 (数学) · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: ブラウワーの不動点定理と連結空間 · 続きを見る »

逆函数定理

数学、特に微分学において逆函数定理(ぎゃくかんすうていり、inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の ''C''1 級へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。.

新しい!!: ブラウワーの不動点定理と逆函数定理 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ブラウワーの不動点定理とLp空間 · 続きを見る »

PlanetMath

PlanetMath(プラネットマス)はユーザーが協力して作成するフリーの数学辞典のウェブサイト。人気の数学辞典サイトMathWorldが訴訟によって差し止められたことをきっかけに、2000年の秋から開設された。PlanetMath ではピアレビューと厳密性に重点をおき、教育に利用できるようなコンテンツをめざしている。各項目の分類は米国数学会(American Mathematical Society)の発行する数学科目分類(Mathematics Subject Classification)に準拠している。 ライセンスには クリエイティブ・コモンズ・ライセンス (CC-BY) を使用している。ウィキペディアなどとは異なり、各記事に責任者が存在し、それ以外のユーザが勝手にページを書き換えることはできない。ただし、サイト利用者はコメント機能を通して記事の責任者に意見を伝えることができるようになっている。なお、各ページは数学記号の使用を考慮してLaTeXで記述されており、コンテンツ管理には Noösphere という独自に開発されたソフトウェアを使用している。英語版ウィキペディアでは、PlanetMath の内容をウィキペディアに活用するプロジェクトがある。.

新しい!!: ブラウワーの不動点定理とPlanetMath · 続きを見る »

沈め込み

数学において、沈め込み (submersion) とは、可微分多様体間の可微分写像であって微分がいたるところ全射であるもののことである。これは微分トポロジーにおいて基本的な概念である。沈め込みの概念ははめ込みの概念の双対である。.

新しい!!: ブラウワーの不動点定理と沈め込み · 続きを見る »

ここにリダイレクトされます:

ブラウアーの不動点定理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »