ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

カイラリティ

索引 カイラリティ

イラリティ (chirality) は、ある現象とその鏡像が同一にはならないような性質である。掌性ともいう。数学におけるも参照のこと。粒子のカイラリティは、そのスピンによって定義することができる。2つのカイラリティの間の対称性変換はパリティ変換と呼ばれる。 1957年に呉健雄らによって行われた、コバルト60の原子核の弱い崩壊に対する実験は宇宙のパリティ対称性の破れを実証した。.

43 関係: 基準系原子核右巻き、左巻き変換 (数学)対称性 (物理学)射影弱い相互作用ポアンカレ群ラグランジュ力学ローレンツ変換ワインバーグ=サラム理論ヘリシティー (素粒子)パリティ (物理学)パリティ対称性の破れディラック・スピノルフレーバー (素粒子)フェルミ粒子ニュートリノニュートリノ振動呉健雄カイラル対称性ガンマ行列キラリティークォークグルーオンゲージ理論コバルト60スピノールスピン角運動量光子光速固有値空間ベクトル素粒子運動量鏡像表現 (数学)重力子量子色力学自発的対称性の破れ電子標準模型演算子

基準系

基準系(きじゅんけい)、基準座標系(きじゅんざひょうけい)、または参照系(さんしょうけい、frame of reference, reference frame )は、物理学において、系の内部の対象の位置、方位、およびその他の性質の測定を行う基準となる座標系または座標軸の集合、またはの運動の状態に結びつけられた観測基準系 を言う。.

新しい!!: カイラリティと基準系 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: カイラリティと原子核 · 続きを見る »

右巻き、左巻き

右巻き(みぎまき)、左巻き(ひだりまき)とは、巻き方、正確には「巻きの方向が右か左か」を表す。しかし、この直観的な定義は、実際には曖昧さを含み、混乱の元となる場合もある。 この項では混乱を避ける事に留意しながら、先に一般的な場合について説明し、その後に実際の色々な巻きについて、その様子、言葉の用法などを述べる。.

新しい!!: カイラリティと右巻き、左巻き · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: カイラリティと変換 (数学) · 続きを見る »

対称性 (物理学)

対称性ラベルを示す面心立方格子構造の第一ブリュアンゾーン 物理学における対称性(たいしょうせい、symmetry)とは、物理系の持つ対称性 — すなわち、ある特定の変換の下での、系の様相の「不変性」である。.

新しい!!: カイラリティと対称性 (物理学) · 続きを見る »

射影

射影(しゃえい、projection)とは、物体に光を当ててその影を映すこと、またその影のことである。; 集合論; 圏論; 線型代数学: 内積空間における(正)射影→射影作用素; 位相幾何学: 束の射影→ファイバー束、ベクトル束等を参照; 関係代数の射影演算: 関係代数 (関係モデル)#射影.

新しい!!: カイラリティと射影 · 続きを見る »

弱い相互作用

弱い相互作用(よわい そうごさよう、)とは、素粒子の間で作用する4つの基本相互作用の内の一つである。弱い核力、あるいは単に弱い力とも呼ばれる。この相互作用による効果として代表的なものにベータ崩壊がある。電磁相互作用と比較して、力が非常に弱いことからこの名がついた。.

新しい!!: カイラリティと弱い相互作用 · 続きを見る »

ポアンカレ群

ポアンカレ群(ポアンカレぐん、Poincaré group)とは、ポアンカレ変換の為す変換群。10次元のノンコンパクトリー群である。.

新しい!!: カイラリティとポアンカレ群 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: カイラリティとラグランジュ力学 · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: カイラリティとローレンツ変換 · 続きを見る »

ワインバーグ=サラム理論

ワインバー.

新しい!!: カイラリティとワインバーグ=サラム理論 · 続きを見る »

ヘリシティー (素粒子)

ヘリシティー (helicity) は、粒子のスピンの回転方向を表す数値である。その値が-のものを左巻き、+のものを右巻きと呼ぶ。 数学的には、スピン\vec Sの運動量の向き \hat p への射影として、次のように表される: ある軸に関するスピンの固有値は離散的な値なので、ヘリシティーの固有値は離散的である。スピンSの粒子について、ヘリシティーの固有値はS,,..., −Sである。スピンSの粒子で計測されるヘリシティーは−Sから+Sの範囲を取りうる。ヘリシティーは、 \vec S の代わりに全角運動量演算子 \vec J によって等価に書き表すことができる。これは、線運動量に沿った軌道角運動量の射影は次のように0になるためである: 3 + 1次元において、質量を持たない粒子についての小群はSE(2)の二重被覆である。これは、SE(2)の"並進"に対して不変でありSE(2)のθ回転に対してeihθ変換を行うユニタリ表現を持つ。これはヘリシティーh表現である。SE(2)の並進に対して非自明に変換を行う別のユニタリ表現もある。これは、連続スピン表現である。 次元において、小群はSE() の二重被覆である。(の場合はエニオンなどのためにさらに複雑である。)前述のように、"標準"表現(SE()の"並進")および"連続スピン"表現に対して変換を行わない(不変である)ユニタリ表現が存在する。 質量を持たない2粒子にとって、ヘリシティーは\hbar/2倍されたカイラル演算子と等価である。.

新しい!!: カイラリティとヘリシティー (素粒子) · 続きを見る »

パリティ (物理学)

物理学において、パリティ変換 (parity transformation) は一つの空間座標の符号を反転させることである。パリティ反転 (parity inversion) とも呼ぶ。一般的に、三次元におけるパリティ変換は空間座標の符号を三つとも同時に反転することで記述される: パリティ変換の3×3行列表現 P は−1に等しい行列式を持つため、1に等しい行列式を持つ回転へ還元することができない。対応する数学的概念は点対称変換である。 二次元平面では、パリティ変換は全ての条件の同時反転、数学的には180°の回転ではない。P行列の行列式が−1であること、つまりパリティ変換はxとyの両方ではなくどちらかの符号を反転させる二次元での180°回転ではないということが重要である。.

新しい!!: カイラリティとパリティ (物理学) · 続きを見る »

パリティ対称性の破れ

パリティ対称性の破れ(パリティたいしょうせいのやぶれ、Parity violation)とは、空間反転した(鏡に映した)ときに物理法則が同じにならないこと、または、その様な状態を言う。弱い相互作用が関与する物理現象で起こる。 P対称性の破れ、あるいは、パリティ非保存とも。.

新しい!!: カイラリティとパリティ対称性の破れ · 続きを見る »

ディラック・スピノル

自由粒子のディラック方程式の解は、以下の平面波の形式を持つ: ここで、\omega \, は4成分スピノル (ディラック・スピノル) であり、x \, を変数とする関数ではない。 このスピノルは以下のように書き下せる.

新しい!!: カイラリティとディラック・スピノル · 続きを見る »

フレーバー (素粒子)

素粒子物理学において、フレーバー (flavour, flavor) とはクォークとレプトンの種類を意味する。また、これらの素粒子の種類を分類する量子数としても定義される。.

新しい!!: カイラリティとフレーバー (素粒子) · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: カイラリティとフェルミ粒子 · 続きを見る »

ニュートリノ

ニュートリノ()は、素粒子のうちの中性レプトンの名称。中性微子とも書く。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。.

新しい!!: カイラリティとニュートリノ · 続きを見る »

ニュートリノ振動

ニュートリノ振動(ニュートリノしんどう、 )は、生成時に決定されたニュートリノのフレーバー(電子、ミューオン、タウ粒子のいずれか)が、後に別のフレーバーとして観測される素粒子物理学での現象。その存在確率はニュートリノが伝搬していく過程で周期的に変化(すなわち振動)する。これはニュートリノが質量を持つことにより起きるとされ、素粒子物理学の標準模型では説明できない。.

新しい!!: カイラリティとニュートリノ振動 · 続きを見る »

呉健雄

呉健雄(ご けんゆう)は中国系アメリカ人物理学者。専門は放射線物理学で、弱い相互作用におけるパリティの非保存を初めて実験的に確認した業績で知られる。第二次世界大戦中はマンハッタン計画に参加してウラン燃料の濃縮手法の研究を行った。多くの科学者から「物理学界のファーストレディ」「中国のキュリー夫人」「ウー夫人」などのニックネームで呼ばれた。祖籍は江蘇省太倉市。.

新しい!!: カイラリティと呉健雄 · 続きを見る »

カイラル対称性

イラル対称性(カイラルたいしょうせい、chiral symmetry)とは、量子色力学 (QCD) において、クォークのフレーバーを右巻きスピン成分と左巻きスピン成分で独立に変換する近似的な対称性である(スピンの右巻き、左巻きについてはカイラリティを参照のこと)。QCDのダイナミクスにより、カイラル対称性には自発的対称性の破れが起き、ハドロンに大きい質量を与える。なお、南部、ヨナラシニオが自発的対称性の破れの概念を最初に提唱した際に扱われた対称性は、このカイラル対称性である。 物質に質量を与える機構は、他にヒッグス場との相互作用があるが、ハドロンである陽子や中性子の質量(1GeV程度)に関しては,それらを構成するアップクォーク、ダウンクォークがヒッグス場との湯川相互作用により与えられる質量自身は数MeV程度であり、ハドロン質量全体の2%程度に過ぎない。残りの98%はカイラル対称性の破れによるものである。.

新しい!!: カイラリティとカイラル対称性 · 続きを見る »

ガンマ行列

ンマ行列(ガンマぎょうれつ、gamma matrices)、あるいはディラック行列(ディラックぎょうれつ、Dirac matrices)とは、反交換関係 によって定義される行列の組。場の理論におけるディラック場の記述に応用される。物理学者ポール・ディラックが相対論的な波動方程式としてディラック方程式を導く際に導入した。.

新しい!!: カイラリティとガンマ行列 · 続きを見る »

キラリティー

ラリティー (chirality) は、3次元の図形や物体や現象が、その鏡像と重ね合わすことができない性質。掌性。 キラリティがあることをキラル (chiral) という。英語風の発音でカイラリティ、カイラルともいう。これらの語はギリシャ語で「手」を意味するχειρ (cheir) が語源である。手はキラルなものの一例で、右手とその鏡像である左手は互いに重ね合わせられない(右手の掌と左手の甲を向かい合わせたときに重なり合わないということである)。一方でキラリティがない、つまり鏡像と重ね合わせられることをアキラル (achiral) という。キラルな図形とその鏡像を互いに(たとえば右手に対する左手を)enantiomorphsと言い、ギリシャ語で「反対」を意味するεναντιος (enantios) が語源である。 対掌性(たいしょうせい)ともいう。対掌とは右と左の手のひらの対を意味している。対称性と紛らわしいが、キラリティとは鏡像対称性の欠如であり、むしろ逆の意味になる。 幾何学的な図形のほか、分子、結晶、スピン構造などについて使われる。以下では分子のキラリティを中心に述べる。.

新しい!!: カイラリティとキラリティー · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: カイラリティとクォーク · 続きを見る »

グルーオン

ルーオン()とは、ハドロン内部で強い相互作用を伝える、スピン1のボース粒子である。質量は0で、電荷は中性。また、「色荷(カラー)」と呼ばれる量子数を持ち、その違いによって全部で8種類のグルーオンが存在する。膠着子(こうちゃくし)、糊粒子という呼び方もあるが、あまり使われない。 他のゲージ粒子と違い、通常の温度・密度ではクォーク同様単独で取り出すことは不可能であるとされる。 また、グルーオン自身が色荷を持つため、グルーオンどうしにも相互作用が働く。これは電磁相互作用を伝える光子にはない性質である。この性質により、グルーオンのみで構成された粒子、グルーボールの存在が、格子QCD及び超弦理論によって示唆されている。.

新しい!!: カイラリティとグルーオン · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: カイラリティとゲージ理論 · 続きを見る »

コバルト60

バルト60は、コバルトの同位体の一種である。放射性同位体であり、半減期は5.27年である。医療用、工業用のガンマ線源として利用される。.

新しい!!: カイラリティとコバルト60 · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: カイラリティとスピノール · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: カイラリティとスピン角運動量 · 続きを見る »

光子

|mean_lifetime.

新しい!!: カイラリティと光子 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: カイラリティと光速 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: カイラリティと固有値 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: カイラリティと空間ベクトル · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: カイラリティと素粒子 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: カイラリティと運動量 · 続きを見る »

鏡像

鏡像(きょうぞう)とは一般的な意味では、鏡に映った像のこと。一般的な意味での鏡像は、数学的意味での鏡像と、光の反射の性質によってつながっている。鏡面が完全に平坦ならば鏡像は元の図形と合同になるが、凹面鏡や凸面鏡のように曲面の場合はその限りではない。.

新しい!!: カイラリティと鏡像 · 続きを見る »

表現 (数学)

数学における表現(ひょうげん、representation, Darstellung)とは、ある体系に対してそれを類型的に書き表すことのできる数理モデルを構成すること、あるいは構成されたモデルそのもののことを言う。公理によって定義される抽象空間、たとえばユークリッド空間のようなものに座標を入れて数の組からなる空間 Rn と見なしたり、たとえば抽象群のようなものをある具体的な空間上の変換群として表すような、扱いやすさ・具体性を増すようなものが通常は扱われる。 線型写像の行列による表現(行列表現)や、群の置換による表現(置換表現)などは典型的な表現の例である。とくに、ガロア理論(ガロアの逆問題)はガロア群を根の置換として表すという意味で表現の理論の一つであるということができる。また ''p'' 進数の概念は類体論の研究において代数関数の類似物として有理数を“表現”することによってクルト・ヘンゼルが得たものである。 構成される表現は多くの場合、もとの体系に対して何らかの意味で「潰れている」。潰れていない表現は忠実 (faithful) であるとか同型的 (isomorphic) であるなどという。忠実な表現はもちろん重要であるが、一般にはある体系の表現の全体というものを考えることによってもとの体系を「復元」することが興味の対象となる。したがって、表現の分類によってもとの体系を特徴付けることが、表現に関する理論の研究の大きな指針の一つとなる。あるいは表現の仕方に依らずに決まる性質を抽出することによって元の体系の分類を与えるようなことも考えられる。 一般に表現論と呼ばれる分野では、典型的に群や環などといった代数系(一般にはリー群やリー環のような位相を伴う系)の線型空間・射影空間あるいはもっと一般の加群などにおける表現(線型表現・射影表現)が取り扱われる。これはつまり、作用を持つ加群の理論である。そこでは抽象的な群・環を線型写像の成す群・環として、とくに有限次元空間における表現はさらに行列によって、書き表されることになり、古典群と呼ばれる一般線型群の代数的な部分群・商群たちやその上の調和解析が、関数解析学や組合せ論などの言葉を用いて展開される。線型表現などでは特に、空間に係数が考えられるため、係数の取替えによる類似の議論や類似物の構成がしばしば行われるが、標数 0 の場合の通常表現や正標数の場合のモジュラー表現などを比較すると、それらの様子は大きく変わってくる。.

新しい!!: カイラリティと表現 (数学) · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: カイラリティと重力子 · 続きを見る »

量子色力学

量子色力学(りょうしいろりきがく、、略称: QCD)とは、素粒子物理学において、SU(3)ゲージ対称性に基づき、強い相互作用を記述する場の量子論である。.

新しい!!: カイラリティと量子色力学 · 続きを見る »

自発的対称性の破れ

自発的対称性の破れ(じはつてきたいしょうせいのやぶれ、spontaneous symmetry breaking)とは、ある対称性をもった系がエネルギー的に安定な真空に落ち着くことで、より低い対称性の系へと移る現象やその過程を指す。類義語に明示的対称性の破れや量子異常による対称性の破れ、またこれらの起源の1つとしての力学的対称性の破れなどがある。 主に物性物理学、素粒子物理学において用いられる概念であり、前者では超伝導を記述するBCS理論でクーパー対ができる十分条件、後者では標準模型においてゲージ対称性を破り、ウィークボソンに質量を与えるヒッグス機構等に見ることができる。また、この他、磁気学における強磁性体の磁化についても発生の前後で自発的対称性の破れが考えられている。.

新しい!!: カイラリティと自発的対称性の破れ · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: カイラリティと電子 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: カイラリティと標準模型 · 続きを見る »

演算子

演算子(えんざんし、operator symbol, operator name)は、数式やコンピュータプログラミング言語などで、各種の演算を表わす記号・シンボルである。普通は、演算子は単なる記号ないし記号列であって構文論的なものであり、それに対応する演算は意味論の側にある。たとえばJavaにおいて、演算子 + を使った a + b という式は、構文論上は単にそういう式だというだけである。意味論的には数値の加算であったり、文字列の連結であったりするが、それは a と b の型に依って決まる(理論的には項書き換えのように、構文論的に意味論も与えられた演算子といったものもある)。 演算が作用する対象のことを被演算子(operand; オペランド、被演算数、引数)という。たとえば、n と 3 との和を表す式 "n + 3" において、"+" は演算子であり、その被演算子は "n" と "3" である。また、数式として一般的な被演算子と被演算子の間に演算子を記述する構文は中置記法と呼ばれる。 数学的には、基本的には、関数(単項演算子では1引数の関数、2項演算子は2引数の関数)をあらわすある種の糖衣構文のようなものに過ぎない。しかし、汎函数計算など、演算子を操作するような手法もある。.

新しい!!: カイラリティと演算子 · 続きを見る »

ここにリダイレクトされます:

カイラリティーカイラル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »