ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ヘリシティー (素粒子)

索引 ヘリシティー (素粒子)

ヘリシティー (helicity) は、粒子のスピンの回転方向を表す数値である。その値が-のものを左巻き、+のものを右巻きと呼ぶ。 数学的には、スピン\vec Sの運動量の向き \hat p への射影として、次のように表される: ある軸に関するスピンの固有値は離散的な値なので、ヘリシティーの固有値は離散的である。スピンSの粒子について、ヘリシティーの固有値はS,,..., −Sである。スピンSの粒子で計測されるヘリシティーは−Sから+Sの範囲を取りうる。ヘリシティーは、 \vec S の代わりに全角運動量演算子 \vec J によって等価に書き表すことができる。これは、線運動量に沿った軌道角運動量の射影は次のように0になるためである: 3 + 1次元において、質量を持たない粒子についての小群はSE(2)の二重被覆である。これは、SE(2)の"並進"に対して不変でありSE(2)のθ回転に対してeihθ変換を行うユニタリ表現を持つ。これはヘリシティーh表現である。SE(2)の並進に対して非自明に変換を行う別のユニタリ表現もある。これは、連続スピン表現である。 次元において、小群はSE() の二重被覆である。(の場合はエニオンなどのためにさらに複雑である。)前述のように、"標準"表現(SE()の"並進")および"連続スピン"表現に対して変換を行わない(不変である)ユニタリ表現が存在する。 質量を持たない2粒子にとって、ヘリシティーは\hbar/2倍されたカイラル演算子と等価である。.

12 関係: 射影ユークリッドの運動群ユニタリ表現ウィグナーの分類エニオンカイラリティスピン角運動量固有値素粒子運動量被覆空間角運動量

射影

射影(しゃえい、projection)とは、物体に光を当ててその影を映すこと、またその影のことである。; 集合論; 圏論; 線型代数学: 内積空間における(正)射影→射影作用素; 位相幾何学: 束の射影→ファイバー束、ベクトル束等を参照; 関係代数の射影演算: 関係代数 (関係モデル)#射影.

新しい!!: ヘリシティー (素粒子)と射影 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: ヘリシティー (素粒子)とユークリッドの運動群 · 続きを見る »

ユニタリ表現

数学において、群 のユニタリ表現(unitary representation)とは、複素ヒルベルト空間 上の の線型表現 であって、 が任意の に対してユニタリ作用素となるようなものである。一般論は が局所コンパクト(ハウスドルフ)位相群であり表現がである場合にはよく発展している。 理論は1920年代から量子力学において広く応用されており、とくにヘルマン・ワイルの1928年の本 に影響を受けている。応用において有用な特定の群だけでなく任意の群 に対してユニタリ表現の一般論を構成したパイオニアの1人はであった。.

新しい!!: ヘリシティー (素粒子)とユニタリ表現 · 続きを見る »

ウィグナーの分類

ウィグナーの分類(Wigner's classification) とは、数学と理論物理学において、ポアンカレ群の、質量の鋭敏な固有値を持つ、非負のエネルギー E ≥ 0 の既約ユニタリ表現の分類である。物理学における素粒子論での素粒子や場の量子論での場の数学的表現を分類するために、ユージン・ウィグナーによって提唱された。分類はポアンカレ群の安定化部分群に依拠し、さまざまな質量状態のウィグナー小群(Wigner little groups)と呼ぶ。 質量 m \equiv \sqrt はポアンカレ群のであり、その表現を名づけるのには役に立つかもしれない。 この表現は m > 0 の場合、m.

新しい!!: ヘリシティー (素粒子)とウィグナーの分類 · 続きを見る »

エニオン

ニオン (anyon) は、二次元の系においてのみ現れる粒子である。これは、フェルミ粒子およびボース粒子の概念を一般化したものである。.

新しい!!: ヘリシティー (素粒子)とエニオン · 続きを見る »

カイラリティ

イラリティ (chirality) は、ある現象とその鏡像が同一にはならないような性質である。掌性ともいう。数学におけるも参照のこと。粒子のカイラリティは、そのスピンによって定義することができる。2つのカイラリティの間の対称性変換はパリティ変換と呼ばれる。 1957年に呉健雄らによって行われた、コバルト60の原子核の弱い崩壊に対する実験は宇宙のパリティ対称性の破れを実証した。.

新しい!!: ヘリシティー (素粒子)とカイラリティ · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ヘリシティー (素粒子)とスピン角運動量 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: ヘリシティー (素粒子)と固有値 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: ヘリシティー (素粒子)と素粒子 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: ヘリシティー (素粒子)と運動量 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: ヘリシティー (素粒子)と被覆空間 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: ヘリシティー (素粒子)と角運動量 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »