ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

順序環

索引 順序環

抽象代数学において、順序環(じゅんじょかん、)は、演算と両立するような全順序が定義された(通常は可換な)環を言う。即ち、 が順序環であるとき、任意の元 に対し、以下の二つが成り立つ。.

25 関係: 反数可換環実数アメリカ数学会アーベル群全順序全順序群元 (数学)矛盾算術算法絶対値環 (数学)順序体順序群順序集合複素数証明零因子零環虚数単位抽象代数学正の数と負の数有理数整数

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

新しい!!: 順序環と反数 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 順序環と可換環 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 順序環と実数 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 順序環とアメリカ数学会 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 順序環とアーベル群 · 続きを見る »

全順序

数学における線型順序(せんけいじゅんじょ、linear order)、全順序(ぜんじゅんじょ、total order)または単純順序(たんじゅんじゅんじょ、simple order)は、推移的、反対称かつ完全な二項関係を言う。集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。 即ち、集合 X が関係 ≤ によって全順序付けられるとき、X の任意の元 a, b, c に対して、以下の条件 が満足される。 反対称性によって a < b でも b < a でもあるような不確定な状態は排除される。完全性を持つ関係は、その集合の任意の二元がその関係でであることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である。また完全性から反射性 (a ≤ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序のと呼ばれる。.

新しい!!: 順序環と全順序 · 続きを見る »

全順序群

抽象代数学における線型順序群 (linearly ordered group) または全順序群(ぜんじゅんじょぐん、totally ordered group)は、群 と全順序 "" との組 で、その順序 が(平行) 移動不変 (translation-invariant) となるものを言う。移動作用の別に従って、移動不変の概念も異なるものを考え得る。すなわち の演算を加法的に記すものとするとき、 を の元として、 が.

新しい!!: 順序環と全順序群 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 順序環と元 (数学) · 続きを見る »

矛盾

矛盾(むじゅん、contradiction)とは、あることを一方では肯定し、同時に他方では否定するなど、論理の辻褄(つじつま)が合わないこと。物事の筋道や道理が合わないこと。.

新しい!!: 順序環と矛盾 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 順序環と算術 · 続きを見る »

算法

n 項算法(エヌこうさんぽう)とは、広義には、集合 A の直積集合 An の部分集合 D から A への写像 f のことをいい、D をこの算法の定義域という。n は任意の順序数でよい。 これを(仮に)f の項数とよぶ。 An は i < n をみたす順序数 i を添数とする A の元の族 (ai)i<n すべてからなる集合を表す。 集合 A とそこにおける算法の族 R との組み (A, R) を代数系という。.

新しい!!: 順序環と算法 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 順序環と絶対値 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 順序環と環 (数学) · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 順序環と順序体 · 続きを見る »

順序群

抽象代数学における(半)順序群(じゅんじょぐん、ordered group)は、両側移動不変な順序関係を付加的な構造として備えた群である。.

新しい!!: 順序環と順序群 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 順序環と順序集合 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 順序環と複素数 · 続きを見る »

証明

証明(しょうめい)とは、ある事柄が真理もしくは事実であることを明らかにすること。また、その内容。.

新しい!!: 順序環と証明 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 順序環と零因子 · 続きを見る »

零環

数学の分野である環論において、零環(the zero ring)または自明環 (trivial ring) は1つの元からなる(同型を除いて)唯一の環である。(あまり一般的ではないが、“零環 (zero ring)”という用語は任意の rng of square zero, すなわちすべての x と y に対して であるような rng を指すために使われることもある。この記事では1つの元からなる環の意味で使う。) 環の圏において、零環は終対象である。始対象は有理整数環 Z である。.

新しい!!: 順序環と零環 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 順序環と虚数単位 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 順序環と抽象代数学 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 順序環と正の数と負の数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 順序環と有理数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 順序環と整数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »