ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

極端紫外線リソグラフィ

索引 極端紫外線リソグラフィ

極端紫外線リソグラフィ (Extreme ultraviolet lithography、略称:EUVリソグラフィ または EUVL) は、極端紫外線、波長13.5 nmにて露光する次世代リソグラフィ 技術である。.

93 関係: AMDASML原子半値幅吸光度実用二次電子価電子微細加工技術ナノメートルマサチューセッツ工科大学ハロゲン化銀ハイテクバンドギャップポーラロンポアソン分布モリブデンラトガース大学レンズレンズフレアボーア半径プラズマデブリフラッシュメモリフッ素フォノンフォトマスクフォトリソグラフィフォトレジストフォトダイオードニューヨーク州立大学オールバニ校分解能アバランシェフォトダイオードアメリカ国立標準技術研究所アルゴンアブレーションアクリル樹脂インテルイオンイオン化イオン化エネルギーウィスコンシン大学マディソン校ウェハーエネルギー効率エルビウムエキシマレーザーカリフォルニア大学バークレー校カール・ツァイスキセノンクリプトン...ケイ素コヒーレント光コヒーレンスショット雑音スズサムスンサムスン電子共鳴光子光電子国際光工学会窒化ケイ素真空真空紫外線炭酸ガスレーザー点拡がり関数相対性理論Dynamic Random Access Memory高性能計算開口数重合体自由電子レーザー電子電子ボルト電子線描画装置陰極線GLOBALFOUNDRIESIBMIMECSEMATECHSKハイニックスTSMCX線架橋次世代リソグラフィ水冷波長液浸消費電力潜像放射光2017年2020年 インデックスを展開 (43 もっと) »

AMD

AMD.

新しい!!: 極端紫外線リソグラフィとAMD · 続きを見る »

ASML

ASML(ASML Holding N.V.)は、オランダ南部・フェルトホーフェンに本部を置く半導体製造装置メーカーである。半導体露光装置(ステッパー、フォトリソグラフィ装置)を販売する世界最大の会社で、16ヶ国に60以上の拠点を有し、世界中の主な半導体メーカーの80%以上がASMLの顧客である。ユーロネクスト、NASDAQ上場企業(、)。.

新しい!!: 極端紫外線リソグラフィとASML · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 極端紫外線リソグラフィと原子 · 続きを見る »

半値幅

半値幅(はんちはば、half width)は、山形の関数の広がりの程度を表す指標。半値全幅 (はんちぜんはば、full width at half maximum, FWHM) と、その半分の値の半値半幅 (half width at half maximum, HWHM) とがある。単に半値幅と言うと半値全幅のことが多い。.

新しい!!: 極端紫外線リソグラフィと半値幅 · 続きを見る »

吸光度

吸光度(きゅうこうど、absorbance)とは分光法において、ある物体を光が通った際に強度がどの程度弱まるかを示す無次元量である。光学密度(こうがくみつど、optical density)とも呼ばれることがある。吸収・散乱・反射をすべて含むため、吸収のみを表すものではない。 分析化学において、波長λにおける吸光度 Aλ は と定義される。つまり、入射光強度 I0 と透過光強度 I の比(透過率)の常用対数をとり、吸収のある場合を正とするために負号を付けたものである。透過率が光路長に対し指数関数的減衰するのに対し、吸光度は対数で表されているため光路長に比例して減少する。例えば透過率が 0.1(吸光度が 1)の物体の厚さが3倍になったとすると透過率は 0.13.

新しい!!: 極端紫外線リソグラフィと吸光度 · 続きを見る »

実用

実用(じつよう)とは、実験や理論の段階ではなく、実際に使うこと、実際に役立つことの意味である。特に、普段の生活に利用可能なことを指す場合が多い。そのような状況に持ち込むことを実用化という。 実用は基礎理論の応用にあたる。例えば、物理学や化学の応用分野は工学であり、医学や農学は生物学のそれにあたると見ることもできる。実用に供するための研究、およびその分野を実学と云うことがある。 新しい理論、あるいは技術は、それまでに利用不可能であった便利さや効果を得ることを可能にすることを予想させる。しかしながら、実際にそれを可能にするためには、以下のような問題を解決しなければならない。.

新しい!!: 極端紫外線リソグラフィと実用 · 続きを見る »

二次電子

二次電子(にじでんし、secondary electrons)とは、一次電子が固体に衝突した場合に、その表面から放出される電子のこと。 二次電子のエネルギー分布は、電子が衝突する金属の種類にあまり依存せず、一般にマクスウェル分布となる。 一次電子のエネルギーが大きすぎると、固体の奥深くまで一次電子が侵入する。よって二次電子が多く生成したとしても、固体表面まで到達し放出される二次電子の数は少なくなる。 しかし一次電子を固体表面に斜めから照射すると、二次電子は表面近くで生成するため、放出される二次電子も多くなる。 一次電子数と二次電子数の比は、二次電子倍増率と呼ばれる。二次電子倍増率は、金属によって異なるが、固体表面の温度にはあまり依存しない。.

新しい!!: 極端紫外線リソグラフィと二次電子 · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: 極端紫外線リソグラフィと価電子 · 続きを見る »

微細加工技術

微細加工技術とは微小領域に精細な加工を施す技術である。.

新しい!!: 極端紫外線リソグラフィと微細加工技術 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: 極端紫外線リソグラフィとナノメートル · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: 極端紫外線リソグラフィとマサチューセッツ工科大学 · 続きを見る »

ハロゲン化銀

ハロゲン化銀(ハロゲンかぎん、silver halide)は銀のハロゲン化物であり、臭化銀 AgBr、塩化銀 AgCl、ヨウ化銀 AgI、および AgF、Ag2F などのフッ化銀が知られている。これらの化合物は総称としてハロゲン化銀と呼ばれ、化学式ではハロゲンを X として AgX と表記される。ほとんどすべてのハロゲン化銀は+1の酸化状態をとっている銀(I) (Ag+) の塩であり、+2のもの (Ag2+) もあるが、安定な化合物としてはフッ化銀(II) のみが知られている。光によって反応を起こし、写真フィルムなどに利用される。.

新しい!!: 極端紫外線リソグラフィとハロゲン化銀 · 続きを見る »

ハイテク

ハイテクは、ハイ・テクノロジー(High-Technology)の略で、先端分野の技術体系(先端技術)を指し、主に電子回路や情報処理に関連する、応用技術体系を指す。.

新しい!!: 極端紫外線リソグラフィとハイテク · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

新しい!!: 極端紫外線リソグラフィとバンドギャップ · 続きを見る »

ポーラロン

ポーラロン(polaron)とは、凝縮系物理学において、固体中の電子と原子の間の相互作用を記述するために用いられる準粒子。ポーラロンの概念は1933年にレフ・ランダウによって初めに提案された。電子が誘電体結晶中を運動すると、周囲の原子は静電相互作用を受け、平衡位置からずれて分極を生じ、電子の電荷をほぼ遮蔽する。この機構はフォノン雲として知られる。ポーラロンとはフォノン雲の衣をまとった電子をひとつの仮想的な粒子とみなしたものである。ポーラロンは元の電子と比べて移動度は低く、有効質量は大きくなる。 長年にわたり、ポーラロンの理論的研究の本流は、とホルスタインが長距離と短距離の相互作用についてそれぞれ導いたハミルトニアンを解くことであった。フレーリッヒ・ハミルトニアンに対する一般的な厳密解は得られておらず、近似的なアプローチが様々に試みられ、それらの正当性について議論が続けられてきた。現在でもなお、巨視的な結晶格子中にある1 - 2個の電子について厳密な数値解を得る問題や、相互作用する多電子系の性質についての研究が盛んに行われている。場の理論の観点からは、ポーラロンはボース粒子場と相互作用しているフェルミ粒子という基本的な問題の典型ともいえる。金属物質中の電子とイオンとの間には、束縛状態やエネルギーの低下をもたらすような相互作用が静電相互作用以外にも存在し、それらに対してもポーラロンという概念が適用されてきた。 実験的研究の観点からも、数多くの物質について、その物性を理解するためにはポーラロン効果を考慮しなければならない。例えば、半導体のキャリア移動度はポーラロンの形成によって大きく低下することがある。有機半導体もポーラロン効果を受けやすく、電荷輸送特性に優れた有機薄膜太陽電池を設計する際にはポーラロン効果が重要となる。低温超伝導体(第一種超伝導体)においてクーパー対形成を担う電子-フォノン相互作用はポーラロンモデルで考えることができる。また、反対スピンを持った二つの電子はフォノン雲を共有してバイポーラロンを形成することがあるが、これが高温超伝導体(第二種超伝導体)におけるクーパー対形成機構として提案されたことがある。さらにまた、ポーラロンはこれらの物質の光伝導を解釈する上でも重要である。 ポーラロンはフェルミ粒子の準粒子であり、ボース粒子の準粒子であるポラリトンと混同してはならない。ポラリトンはフォトンと光学フォノンの混成状態のようなものである。.

新しい!!: 極端紫外線リソグラフィとポーラロン · 続きを見る »

ポアソン分布

統計学および確率論においてポアソン分布 (Poisson distribution)とは、数学者シメオン・ドニ・ポアソンが1838年に確率論とともに発表した、所与の時間間隔で発生する離散的な事象を数える特定の確率変数 を持つ離散確率分布のことである。ある離散的な事象に対して、ポアソン分布は所与の時間内での生起回数の確率を示し、指数分布は生起期間の確率を示す。.

新しい!!: 極端紫外線リソグラフィとポアソン分布 · 続きを見る »

モリブデン

モリブデン(molybdenum 、Molybdän )は原子番号42の元素。元素記号は Mo。クロム族元素の1つ。.

新しい!!: 極端紫外線リソグラフィとモリブデン · 続きを見る »

ラトガース大学

ラトガース大学(Rutgers/ˈrʌtɡərz/, The State University of New Jersey もしくは Rutgers University)は、アメリカ合衆国東海岸ニュージャージー州の州立総合研究大学。1766年11月10日創立であり、アメリカ植民地時代に創設された全米で8番目に古い歴史をもつ名門大学である。 全米の州立大学のうちアイビーリーグと同質の教育を受けられるパブリック・アイビー(Public Ivy)の一校に数えられており、主要世界大学ランキングでも常に上位にランクされている。.

新しい!!: 極端紫外線リソグラフィとラトガース大学 · 続きを見る »

レンズ

レンズ レンズの断面形状の種類 レンズ()とは、.

新しい!!: 極端紫外線リソグラフィとレンズ · 続きを見る »

レンズフレア

レンズフレア (lens flare) は、カメラによって写真・映像を撮影する際に、極めて明るい光源がレンズに向けて当てられている時や、画角内に極めて明るい光源が存在する場合に生じる、暗部への光の漏れである。 実写の映像で起きる現象をハレーションと呼ぶ事もあるが、ハレーションはフィルムのベース面で反射した光線が再び乳剤を感光させる現象であり、レンズフレアとは区別すべきである。 レンズ内面での再反射によっておこるフレアは、反射面の曲率や形状によりさまざまな形態のものが生じうる。特に凹面で強い光が再反射すると、光源から画面中心を基準に対称の位置に比較的はっきりとした像が現れる。このような形態のフレアを、ゴースト(ゴーストイメージ)という。.

新しい!!: 極端紫外線リソグラフィとレンズフレア · 続きを見る »

ボーア半径

ボーア半径(ボーアはんけい、Bohr radius)は、原子、電子のようなミクロなスケールを扱う分野(量子論、原子物理学、量子化学など)で用いられる原子単位系において、長さの単位となる物理定数である。名称はデンマークの原子物理学者ニールス・ボーアに由来する。記号は一般に や で表される。 ボーア半径の値は である(2014 CODATA推奨値CODATA Value)。 ボーア半径はボーアの原子模型において、基底状態にある水素原子の半径で定義され、国際量体系(ISQ)においては と表される。 ここで、 はプランク定数(ディラック定数)、 は真空中の光速度、 は微細構造定数、 は電気素量、 は真空の誘電率、 は電子の質量である。 ガウス単位系は異なる量体系に基づいているので と表される。 原子単位系においては と表される。.

新しい!!: 極端紫外線リソグラフィとボーア半径 · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 極端紫外線リソグラフィとプラズマ · 続きを見る »

デブリ

デブリ (debris).

新しい!!: 極端紫外線リソグラフィとデブリ · 続きを見る »

フラッシュメモリ

フラッシュメモリ (Flash Memory) は、FETでホットエレクトロンを浮遊ゲートに注入してデータ記録を行う不揮発性メモリである。舛岡富士雄が東芝在籍時に発明した。発表に際し、消去が「ぱっと一括して」できる機能から、写真のフラッシュの印象でフラッシュメモリと命名した。.

新しい!!: 極端紫外線リソグラフィとフラッシュメモリ · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

新しい!!: 極端紫外線リソグラフィとフッ素 · 続きを見る »

フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

新しい!!: 極端紫外線リソグラフィとフォノン · 続きを見る »

フォトマスク

フォトマスク(英語:photomask)とは、ガラス乾板とも呼ばれ、電子部品の製造工程で使用されるパターン原版をガラス、石英等に形成した透明な板であり、「フォトリソグラフィ」と呼ばれる転写技術によって電子部品の回路パターン等を被転写対象に転写する際の原版となるものである。 半導体素子、フラットパネルディスプレイ、プリント基板といった電子部品の製造工程で、配線層や部品層といった異なる画像を写すために、数枚から数十枚のフォトマスクが使用される。露光工程で1枚ごとにフォトレジストと呼ばれる感光性材料にフォトマスクの画像が転写される。露光により現像液への溶解性が変化するフォトレジストの特性に基づき、光の当たった部分が除去される、あるいは残存することにより、次のエッチング工程と呼ばれる被加工対象への溶解、除去処理に対するマスクとなる。エッチング工程での被加工対象の不要部分の除去が終了後、フォトレジストを薬液によって剥離することで工程が終了し、次の層の加工のためにまたフォトレジストが塗布され、同様の処理が繰り返される。 高密度半導体の製造に使われる高精細のフォトマスクのものではレチクルと呼ばれるものがある。.

新しい!!: 極端紫外線リソグラフィとフォトマスク · 続きを見る »

フォトリソグラフィ

フォトリソグラフィ(photolithography)は、感光性の物質を塗布した物質の表面を、パターン状に露光(パターン露光、像様露光などとも言う)することで、露光された部分と露光されていない部分からなるパターンを生成する技術。主に、半導体素子、プリント基板、印刷版、液晶ディスプレイパネル、プラズマディスプレイパネルなどの製造に用いられる。.

新しい!!: 極端紫外線リソグラフィとフォトリソグラフィ · 続きを見る »

フォトレジスト

フォトレジスト(英語:photoresist)とは、フォトリソグラフィにおいて使用される、光や電子線等によって溶解性などの物性が変化する組成物である。物質の表面に塗布され、後に続くエッチングなどの処理から物質表面を保護することから、「レジスト」 (resist) の名がある。しかしながら、現在では、感光性を有し、画像様露光・現像によりパターニングを行って表面に画像層を形成することができる物質であればフォトレジストと呼ばれ、必ずしも保護の働きがあるとは限らない。.

新しい!!: 極端紫外線リソグラフィとフォトレジスト · 続きを見る »

フォトダイオード

フォトダイオード フォトダイオード フォトダイオード(Photodiode)は、光検出器として働く半導体のダイオードである。フォトダイオードにはデバイスの検出部に光を取り込むための窓や光ファイバーの接続部が存在している。真空紫外線やX線検出用のフォトダイオードは検出窓が存在しないものもある。 フォトトランジスタは、基本的にはバイポーラトランジスタで、バイポーラトランジスタのベース・コレクターのpn接合に光が到達するようなケースに封入している。フォトトランジスタはフォトダイオードの様に動作するが、光に対してはより高感度である。これは、光子によりベースコレクター間の接合に電子が生成され、それがベースに注入されるからで、この電流がトランジスター動作で増幅される。しかし、フォトトランジスタはフォトダイオードより応答時間が遅い。 ほとんどのフォトダイオードは右の写真の様な形状をしており、発光ダイオードと形状が似ている。2端子(もしくはワイヤー)がそこより出ている。端子の長さの短い方がカソードで、長い方がアノードである。下に回路図が示してあり、電流はアノードからカソードの方向に矢印の向きに流れる。.

新しい!!: 極端紫外線リソグラフィとフォトダイオード · 続きを見る »

ニューヨーク州立大学オールバニ校

ニューヨーク州立大学オールバニ校(ニューヨークしゅうりつだいがくオールバニこう、英称:University at Albany, The State University of New York、略称:オールバニ大学 (University at Albany: UAlbany))は、アメリカ合衆国のニューヨーク州の州都、オールバニに位置する。ニューヨーク州立大学システムの4つの本校(中心校)のうちの一つである。(他:ビンガムトン校、ストーニブルック校、バッファロー校).

新しい!!: 極端紫外線リソグラフィとニューヨーク州立大学オールバニ校 · 続きを見る »

分解能

分解能(ぶんかいのう、Optical resolution)は、装置などで対象を測定または識別できる能力。顕微鏡、望遠鏡、回折格子などにおける能力の指標のひとつである。.

新しい!!: 極端紫外線リソグラフィと分解能 · 続きを見る »

アバランシェフォトダイオード

アバランシェフォトダイオード(avalanche photodiode)とは、アバランシェ増倍と呼ばれる現象を利用して受光感度を上昇させたフォトダイオードである。略称はAPD。 半導体中に大きな電界があると、光子の衝突によって発生する電子が加速され、他の半導体原子と衝突して複数の電子を弾き出す。ここで弾き出された電子は電界によって加速され、他の半導体原子に衝突してさらに電子を弾き出す。この連鎖によって、移動する電子が爆発的に増える現象をアバランシェ増倍と呼ぶ。 アバランシェ増倍によって微弱な光でも大きな電位変化を引き起こせるため、フォトダイオードの受光感度を大きく上昇させることが可能になる。 一般のフォトダイオードの価格が数百円~であるのに対し、従来100万円以上と非常に高価であったが最近になって1万円程度の物も販売されている(2007年4月)。 ちなみに、アバランシェとは雪崩のこと。 主要なメーカーには浜松ホトニクス、京セミ、松定プレシジョンなどが挙げられる。 Category:ダイオード.

新しい!!: 極端紫外線リソグラフィとアバランシェフォトダイオード · 続きを見る »

アメリカ国立標準技術研究所

アメリカ国立標準技術研究所(アメリカこくりつひょうじゅんぎじゅつけんきゅうじょ、National Institute of Standards and Technology, NIST)は、アメリカ合衆国の国立の計量標準研究所であり、アメリカ合衆国商務省配下の技術部門であり非監督(non-regulatory )機関である。1901年から1988年までは国立標準局 (National Bureau of Standards, NBS) と称していた。その公式任務は次の通り。 2007会計年度(2006年10月1日-2007年9月30日)の予算は約8億4330万ドルだった。2009年の予算は9億9200万ドルだが、アメリカ復興・再投資法の一部として6億1000万ドルを別に受け取っている。2013年現在、NISTには約3000人の科学者、工学者、技術者がいる(他にサポートスタッフと運営部門)。また、国内企業や海外から約2700人の科学者、工学者を受け入れている。さらに国内約400ヶ所の提携機関で1300人の製造技術の専門家やスタッフが関わっている。NISTの出版している Handbook 44 は「計測機器についての仕様、許容誤差、他の技術的要件」を提供している。.

新しい!!: 極端紫外線リソグラフィとアメリカ国立標準技術研究所 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

新しい!!: 極端紫外線リソグラフィとアルゴン · 続きを見る »

アブレーション

アブレーションとは材料の表面が蒸発、侵食によって分解する現象である。材料が気化する時の気化潜熱によって冷却する。.

新しい!!: 極端紫外線リソグラフィとアブレーション · 続きを見る »

アクリル樹脂

アクリル樹脂(アクリルじゅし、英語 acrylic resin)とは、アクリル酸エステルあるいはメタクリル酸エステルの重合体で、透明性の高い非晶質の合成樹脂である。特にポリメタクリル酸メチル樹脂(Polymethyl methacrylate)。略称PMMA)による透明固体材はアクリルガラスとも呼ばれる。擦ると特有の匂いを発することから匂いガラス(においガラス)とも呼ばれた。また、ポリカーボネートなどと共に有機ガラスとも呼ばれる。 アクリル樹脂は1934年ごろ工業化された。 数多くの商標名があることでも知られ、ドイツの「プレキシグラス(Plexiglas)」などが有名。.

新しい!!: 極端紫外線リソグラフィとアクリル樹脂 · 続きを見る »

インテル

インテル(英:Intel Corporation)は、アメリカ合衆国カリフォルニア州に本社を置く半導体素子メーカーである。 社名の由来はIntegrated Electronics(集積されたエレクトロニクス)の意味である。.

新しい!!: 極端紫外線リソグラフィとインテル · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 極端紫外線リソグラフィとイオン · 続きを見る »

イオン化

イオン化(イオンか、ionization)とは、電荷的に中性な分子を、正または負の電荷を持ったイオンとする操作または現象で、電離(でんり)とも呼ばれる。 主に物理学の分野では荷電ともいい、分子(原子あるいは原子団)が、エネルギー(電磁波や熱)を受けて電子を放出したり、逆に外から得ることを指す。(プラズマまたは電離層を参照) また、化学の分野では解離ともいい、電解質(塩)が溶液中や融解時に、陽イオンと陰イオンに分かれることを指す。.

新しい!!: 極端紫外線リソグラフィとイオン化 · 続きを見る »

イオン化エネルギー

イオン化エネルギー(イオンかエネルギー、英語:ionization energy、電離エネルギー、イオン化ポテンシャルとも言う)とは、原子、イオンなどから電子を取り去ってイオン化するために要するエネルギー。ある原子がその電子をどれだけ強く結び付けているのかの目安である。 気体状態の単原子(または分子の基底状態)の中性原子から取り去る電子が1個目の場合を第1イオン化エネルギー(IE1)、2個目の電子を取り去る場合を第2イオン化エネルギー(IE2)、3個目の電子を取り去る場合を第3イオン化エネルギー(IE3)・・・(以下続く)と言うShriver & Atkins (2001), p.39。。単にイオン化エネルギーといった場合、第1イオン化エネルギーのことを指すことがある。 イオン化エネルギーの一般的な傾向は、s軌道とp軌道の相対的エネルギーとともに、電子の結合に対する有効核電荷核電荷の効果を考えることによって説明できる。 原子核の正電荷が増すにつれ、与えられた軌道にある負に荷電した電子はより強いクーロン引力を受け、より強く保持される。ヘリウムの1s電子を除去するには水素の1s電子を除去するよりも多くのエネルギーを必要とする。 周期表の同じ周期の中で最高のイオン化エネルギーは希ガスのものであり、希ガスは安定な閉殻電子配置をもつといわれる。 主量子数nの値が小さい内殻電子のイオン化エネルギーは価電子に比べ格段に大きいShriver & Atkins (2001), p.43。。たとえば電子3個のリチウムではIE1は5.32eV であるが、1sからのIE2は75.6eVである。2s軌道の電子は1s軌道の電子ほど強く保持されていない。 最低のイオン化エネルギーは周期表の左端にある第1族元素のものである。これらの原子のひとつから電子1個を除くと希ガス原子と同じ閉殻電子配置を持つイオンになる。 どの原子からも最も容易に失われる電子は最高エネルギー軌道にある電子からである。.

新しい!!: 極端紫外線リソグラフィとイオン化エネルギー · 続きを見る »

ウィスコンシン大学マディソン校

ウィスコンシン大学マディソン校はウィスコンシン大学システムの中核校(本校)であり、20以上の学部を擁する総合大学である。一般的に「ウィスコンシン大学」という場合、マディソン校(本校)を指す。米国の州立大学の中では難関校として知られ、特に、工学、化学、物理学、社会学、政治学、経済学などの分野においては、Gorman Report などの専門調査機関における評価が高い。 同大学は、「パブリック・アイビー」と呼ばれ、ウィスコンシン州屈指の研究機関として高く評価されている。博士課程まで進む学生が多く、大学パフォーマンス評価センター(Center for Measuring University Performance)の2006年調査によれば、博士授与者(Ph.D.)の人数は全米6位である。卒業生、教員、研究者には、ノーベル賞受賞者21名を擁する。 体育会は全米大学体育協会(NCAA)1部リーグ(Division I)の「ビッグ・テン・カンファレンス」に加盟しており、数多くのスポーツ分野で全米チャンピオンになっている。.

新しい!!: 極端紫外線リソグラフィとウィスコンシン大学マディソン校 · 続きを見る »

ウェハー

ウェハー、ウェーハ、ウエーハ、ウエハー、ウェハ、ウエハ(ウェイファ、wafer、/wéifər/)は、半導体素子製造の材料である。高度に組成を管理した単結晶シリコンのような素材で作られた円柱状のインゴットを、薄くスライスした円盤状の板である。呼称は洋菓子のウェハースに由来する。.

新しい!!: 極端紫外線リソグラフィとウェハー · 続きを見る »

エネルギー効率

ネルギー効率(エネルギーこうりつ)とは、広義には投入したエネルギーに対して回収(利用)できるエネルギーとの比をさす。狭義には、燃焼(反応)させるエネルギーのうちどれだけのエネルギーが回収できるかという比率のこと。.

新しい!!: 極端紫外線リソグラフィとエネルギー効率 · 続きを見る »

エルビウム

ルビウム (erbium) は原子番号68の元素。元素記号は Er。希土類元素の一つ(ランタノイドにも属す)。灰色の金属で、常温、常圧で安定な結晶構造は六方最密充填構造 (HCP)。比重は9.05、融点は1497 ℃ (1529 ℃という実験値もあり)、沸点は2863 ℃ (2900 という実験値もあり)。空気中で表面が酸化され、高温で燃えて Er2O3 となる。水にゆっくりと溶ける。酸に易溶。ハロゲンと反応する。常温で常磁性を示す。安定な原子価は3価。.

新しい!!: 極端紫外線リソグラフィとエルビウム · 続きを見る »

エキシマレーザー

マレーザー(Excimer Laser)とは希ガスやハロゲンなどの混合ガスを用いてレーザー光を発生させる装置である。元々は工業用として利用されていたが、最近ではレーシックなどの視力矯正手術においても利用されている。.

新しい!!: 極端紫外線リソグラフィとエキシマレーザー · 続きを見る »

カリフォルニア大学バークレー校

バークレー校はカリフォルニア大学 (University of California) の発祥地であり、10大学からなるカリフォルニア大学システム(UCシステム)の中で最も古い歴史を持つ。ハーバード大学など同国東部の名門私立大学群の集まりである「アイビーリーグ」に対し名門公立大学の集まりである「パブリック・アイビー」の一校である。アメリカの公立大学ランキングでは長期間にわたり1位を維持している。同じ米国西海岸サンフランシスコ近郊のベイエリアに位置するスタンフォード大学とはスポーツ分野を中心に長年ライバル関係にある。 シリコンバレーにも近く位置しておりIT系やコンピューター分野でも多数の大企業から出資を受け研究、開発を行っている。UNIXシステムの一つ、BSDもこの大学の研究室で開発された。元サン・マイクロシステムズ技術者のビル・ジョイは、UCバークレーの学生時代に、viエディタと Cシェル (csh) など様々な基本的なツール・ユーティリティを設計、実装している。 第二次世界大戦当時バークレー校の物理学部教授だったロバート・オッペンハイマーやノーベル化学賞受賞者のグレン・シーボーグを筆頭にバークレー校の多くの学者が原子爆弾開発計画であるマンハッタン計画に携わり、米国における原子力爆弾および水素爆弾の開発に大きく貢献した。現在(2014年)まで70人以上のノーベル賞受賞者を輩出している。化学に関する研究が世界的に有名で、周期表の元素のうち6つが本校で発見された。 現在、アメリカの公立大学においてランキング第1位である。.

新しい!!: 極端紫外線リソグラフィとカリフォルニア大学バークレー校 · 続きを見る »

カール・ツァイス

1910年頃のツァイス工場 カール・ツァイス (Carl Zeiss) は、.

新しい!!: 極端紫外線リソグラフィとカール・ツァイス · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

新しい!!: 極端紫外線リソグラフィとキセノン · 続きを見る »

クリプトン

リプトン(krypton)は原子番号36の元素。元素記号は Kr。希ガス元素の一つ。 常温、常圧で無色、無臭の気体。融点は-157.2 、沸点は-152.9 (-153.4)、比重は2.82 (-157)。重い気体であるため、吸引すると声が低くなる。空気中には1.14 ppmの割合で含まれている。空気を液化、分留することにより得られる。不活性であるがフッ素とは酸化数が+2の不安定な化合物を作る。また、水やヒドロキノンと包接化合物を作る。.

新しい!!: 極端紫外線リソグラフィとクリプトン · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 極端紫外線リソグラフィとケイ素 · 続きを見る »

コヒーレント光

ヒーレント光とは、光束内の任意の2点における光波の位相関係が時間的に不変で一定に保たれていて、任意の方法で光束を分割した後、大きな光路差を与えて再び重ねあわせても完全な干渉性を示す光。 自然界には完全なコヒーレント光は存在しないが、シングルモードで発振するレーザーの出力光はコヒーレント光に近い状態の光である。 コヒーレント光を重ねあわせた時の光強度は、干渉効果のために一般には単独の光強度の和とは異なる値となる。.

新しい!!: 極端紫外線リソグラフィとコヒーレント光 · 続きを見る »

コヒーレンス

物理学において、コヒーレンス (coherence) とは、波の持つ性質の一つで、位相の揃い具合、すなわち、干渉のしやすさ(干渉縞の鮮明さ)を表す。.

新しい!!: 極端紫外線リソグラフィとコヒーレンス · 続きを見る »

ショット雑音

デジタル写真における光子ショット雑音のシミュレーション。 ショット雑音(ショットざつおん、ショットノイズ、Shot noise)とは、回路ノイズの一種である。電気回路における電子や光学装置における光子のようなエネルギーを持った粒子の数が極度に小さい場合、粒子数の統計的変動が測定にかかるほど大きくなるために発生する。ショット雑音は電子工学、電気通信、基礎物理学の分野で問題にされる。 ショット雑音の大きさは光強度や電流の平均値に比例する。普通平均値は信号そのものを指すが、平均値が増えるとき、信号レベルは雑音レベルよりも早く増加する。したがって、多くの場合、ショット雑音は電流や光強度が小さいときにしか問題にならない。 ある時間内に検出される光子数の平均値は光源の強さから決まるが、実際に検出される数は平均値と等しい場合もあれば大きくも小さくもなる。平均値を中心とするその分布はポアソン分布になる。事象の数が大きくなるにつれポアソン分布は正規分布に近づくので、非常に多数の光子を測定すると、信号に含まれる光子雑音は正規分布に近づく。 事象の間に相関がない場合、ショット雑音は理想的なホワイトノイズである。 ポアソン分布の性質から、光子雑音の標準偏差は光子数の平均の平方根に等しいことが示せる。したがってSN比は次の式で表される。 ここでNは検出される光子数の平均である。Nを大きくすれば、SN比もそれにつれて大きくなる。このことから、光子数が小さいときに光子雑音が相対的に重要になることが分かる。.

新しい!!: 極端紫外線リソグラフィとショット雑音 · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

新しい!!: 極端紫外線リソグラフィとスズ · 続きを見る »

サムスン

ムスン.

新しい!!: 極端紫外線リソグラフィとサムスン · 続きを見る »

サムスン電子

ムスン電子(サムスンでんし、삼성전자 三星電子、Samsung Electronics Co., Ltd.)は、大韓民国の会社であり、韓国国内最大の総合家電・電子部品・電子製品メーカーで、サムスングループの中核企業である。スマートフォンとNAND型フラッシュメモリにおいては、ともに世界シェア1位。.

新しい!!: 極端紫外線リソグラフィとサムスン電子 · 続きを見る »

共鳴

共鳴(きょうめい、)とは、物理的な系がある特定の周期で働きかけを受けた場合に、その系がある特徴的な振る舞いを見せる現象をいう。特定の周期は対象とする系ごとに異なり、その逆数を固有振動数とよぶ。 物理現象としての共鳴・共振は、主に の訳語であり、物理学では「共鳴」、電気を始め工学的分野では「共振」ということが多い。 共鳴が知られることになった始原は音を伴う振動現象であると言われるが、現在では、理論式の上で等価・類似の現象も広く共鳴と呼ばれる(バネの振動・電気回路・核磁気共鳴など)。.

新しい!!: 極端紫外線リソグラフィと共鳴 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 極端紫外線リソグラフィと光子 · 続きを見る »

光電子

光電子(こうでんし、photoelectron)は、光電効果によって、光のエネルギーを吸収し、物質表面から外部に放出された自由電子と、固体の内部に留まるが励起されて伝導(光伝導)に寄与するようになった電子の総称である。また、光電子による電流を光電流と呼ぶ。.

新しい!!: 極端紫外線リソグラフィと光電子 · 続きを見る »

国際光工学会

国際光工学会 (こくさいひかりこうがっかい、The International Society for Optical Engineering, SPIE) は、光学、フォトニクス、画像工学の分野における知識の交換、収集、普及を目的とする非営利の国際的な学会である。本部はアメリカ合衆国ワシントン州。.

新しい!!: 極端紫外線リソグラフィと国際光工学会 · 続きを見る »

窒化ケイ素

化ケイ素(ちっかケイそ、silicon nitride)は、化学式 Si3N4 で表される無機化合物。非酸化物セラミックスの代表。シリコンナイトライド ともいう。.

新しい!!: 極端紫外線リソグラフィと窒化ケイ素 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: 極端紫外線リソグラフィと真空 · 続きを見る »

真空紫外線

真空紫外線(しんくうしがいせん、英:Vacuum Ultra Violet, VUV)は、電磁波の1種で、紫外線の中で最も波長の短い10–200 nm 付近の領域を言う。なお、波長帯の区分方法によっては、軟X線と一部が重なることもある。 「真空紫外線」という呼び名は、この波長帯が酸素分子・窒素分子などの吸収帯に当たるため地球大気中を長い距離は通過できず、地球周辺では事実上真空状態でのみ伝播することによる。ただし波長と媒質によっては真空紫外線が透過することもあり、真空紫外線を利用する装置の窓にはそのような物質を使用する。これより波長が短くなるとX線となって透過力が強まり、波長の長い紫外線や可視光線よりも物質中を透過しやすくなる。.

新しい!!: 極端紫外線リソグラフィと真空紫外線 · 続きを見る »

炭酸ガスレーザー

赤外光を照射すると、試験目標は蒸発し燃え尽きる。 炭酸ガスレーザー(たんさんガスレーザー、carbon dioxide laser、CO2レーザー)はガスレーザーの一種であり、気体の二酸化炭素(炭酸ガス)を媒質に赤外線領域の連続波や高出力のパルス波を得るレーザーである。供給エネルギーに対して10-15%程度、最高で20%ほどの出力が得られる。9.4μmと10.6μmを中心とする2つの波長帯で発光する。.

新しい!!: 極端紫外線リソグラフィと炭酸ガスレーザー · 続きを見る »

点拡がり関数

点拡がり関数(てんひろがりかんすう、Point spread function、PSF)または点像分布関数(てんぞうぶんぷかんすう)は、光学系の点光源に対する応答を表す関数である。より一般的な表現はインパルス応答であり、PSFは結像した光学系のインパルス応答と言える。 PSFは様々な文脈で利用され、解像されない被写体で現れる像の中のぼやっとした部分と考えられる。 機能的な意味では、光学伝達関数の空間領域バージョンである。フーリエ光学、天文学、電子顕微鏡や、他のイメージング技術(共焦点レーザー顕微鏡のような3次元顕微鏡、蛍光顕微鏡など)において有用な考え方である。 点被写体が拡散している(ボケている)程度は、結像系の品質の尺度である。蛍光顕微鏡や望遠鏡、光学顕微鏡などコヒーレントでない結像系においては、結像プロセスはそのパワーの面で線形であり、線形系理論によって記述される。光がコヒーレントな場合、結像は複素電場で線形となる。これは、2つの物体AとBとが同時に結像される時、その結果が独立に結像したものの和に等しいことを意味する。換言すると、Aの結像はBの結像には影響されずその逆も真であると言え、それは光子の非相互作用的な性質による(ここでいう和とは光の波動の和であり、非結像面においては光の波動は打ち消し合ったり強め合ったりして干渉を起こしうる)。.

新しい!!: 極端紫外線リソグラフィと点拡がり関数 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 極端紫外線リソグラフィと相対性理論 · 続きを見る »

Dynamic Random Access Memory

Dynamic Random Access Memory(ダイナミック・ランダム・アクセス・メモリ、DRAM、ディーラム)は、コンピュータなどに使用される半導体メモリによるRAMの1種で、コンピュータの主記憶装置やディジタル・テレビやディジタル・カメラなど多くの情報機器の、内部での大規模な作業用記憶として用いられている。(通常のSRAMと同様に)揮発性(電源供給がなくなると記憶情報も失われる)であるばかりでなく、ICチップ中の素子に小さなキャパシタが付随すること(寄生容量)を利用した記憶素子であるため、常にリフレッシュ(記憶保持動作)を必要とするダイナミックメモリであることからその名がある。SRAMに比べ、リフレッシュのために常に電力を消費することが欠点だが、今のところ大容量を安価に提供できるという利点から、DRAMが使われ続けている。.

新しい!!: 極端紫外線リソグラフィとDynamic Random Access Memory · 続きを見る »

高性能計算

性能計算、ハイ・パフォーマンス・コンピューティング(high-performance computing、HPC)は、計算科学のために必要な数理からコンピュータシステム技術までに及ぶ総合的な学問分野である。.

新しい!!: 極端紫外線リソグラフィと高性能計算 · 続きを見る »

開口数

レンズの分野の開口数(かいこうすう、numerical aperture, NA)は、レンズの分解能を求めるための指標である。 開口数の値が大きい方が明るさを取り込めるため、基本的には値が大きい方がいい。 開口数 NA は、物体から対物レンズに入射する光線の光軸に対する最大角度を θ、物体と対物レンズの間の媒質の屈折率を n (レンズの屈折率ではないので注意)として、次の式で表される。 ジョン・ウィリアム・ストラットの理論によると、光学機器の分解能は、対物レンズの開口数と、見ている光の波長で決まる。波長を λ とすれば、2つの点光源の分解能 δ は で表される(本来は係数が0.61ではない場合もあるのだが、代表的数値として通常用いる)。分解能は波長に比例し、開口数に反比例する。 焦点深度 d は である。焦点深度は、波長に比例し、開口数の2乗に反比例する。.

新しい!!: 極端紫外線リソグラフィと開口数 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: 極端紫外線リソグラフィと重合体 · 続きを見る »

自由電子レーザー

自由電子レーザー(じゆうでんしレーザー、free electron laser: FEL)は、自由電子のビームと電磁場との共鳴的な相互作用によってコヒーレント光を発生させる方式のレーザーである。 媒質によって発する光の波長が決まる一般のレーザーと異なり、電気的な操作によって波長を自由に変えることができるという特徴を持ち、軟X線、紫外域、可視光線、遠赤外域まで幅広い波長の光を取り出すことができる。出力もメガワット級まで実用化することができるといわれ、兵器として実用化を目指す研究も行われている。.

新しい!!: 極端紫外線リソグラフィと自由電子レーザー · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 極端紫外線リソグラフィと電子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: 極端紫外線リソグラフィと電子ボルト · 続きを見る »

電子線描画装置

電子線描画装置(でんしせんびょうがそうち、電子ビーム描画装置、電子ビーム露光装置、EB (electron beam) 露光装置、Electron Beam Lithography Exposure)は、電子線加工装置と走査型電子顕微鏡を応用したもので、主に半導体用レチクル作成に用いられる。電子銃から発せられた電子線を電子レンズやアパーチャー、デフレクタなどを通し、X-Y-Zステージを微細に制御しながらマスクブランクスへ照射して目的のパターンを露光する。また、マーク付きウェハーへの直接描画(ダイレクト描画)機能を持つものもある。.

新しい!!: 極端紫外線リソグラフィと電子線描画装置 · 続きを見る »

陰極線

極線(いんきょくせん、Cathode ray)とは真空管の中で観察される電子の流れである。真空に排気されたガラス容器に一対の電極を封入して電圧をかけると、陰極(電源のマイナス端子に接続された電極)の逆側にある容器内壁が発光する。その原因は陰極表面から電子が垂直に撃ち出されることによる。この現象は1869年にドイツの物理学者ヴィルヘルム・ヒットルフによって初めて観察され、1876年にによってKathodenstrahlen(陰極線)と名付けられた。近年では電子線や電子ビームと呼ばれることが多い。 電子が初めて発見されたのは、陰極線を構成する粒子としてであった。1897年、英国の物理学者J・J・トムソンは、陰極線の正体が負電荷を持つ未知の粒子であることを示し、この粒子が後に「電子」と呼ばれるようになった。初期のテレビに用いられていたブラウン管(CRT、cathode ray tubeすなわち「陰極線管」)は、収束させた陰極線を電場や磁場で偏向させることによって像を作っている。.

新しい!!: 極端紫外線リソグラフィと陰極線 · 続きを見る »

GLOBALFOUNDRIES

GLOBALFOUNDRIES (グローバルファウンドリーズ)はアメリカ合衆国の半導体製造企業。ファウンドリとしてはTSMCに次いで世界第2位。本社をカリフォルニア州サニーベールに置く。Advanced Micro Devices (AMD) とアブダビ首長国の投資機関Advanced Technology Investment Company (ATIC) が出資する合弁企業である。組織構成はAMDから分社化された半導体製造部門と、2010年1月13日に合併したチャータード・セミコンダクターと、2014年10月に買収した元IBMの半導体事業から成る。 なお、日本におけるカタカナ表記では「グローバルファウンドリーズ」または「グローバルファウンダリーズ」と表記される。.

新しい!!: 極端紫外線リソグラフィとGLOBALFOUNDRIES · 続きを見る »

IBM

IBM(アイビーエム、正式社名: International Business Machines Corporation)は、民間法人や公的機関を対象とするコンピュータ関連製品およびサービスを提供する企業である。本社はアメリカ合衆国ニューヨーク州アーモンクに所在する。世界170カ国以上で事業を展開している。.

新しい!!: 極端紫外線リソグラフィとIBM · 続きを見る »

IMEC

IMEC.

新しい!!: 極端紫外線リソグラフィとIMEC · 続きを見る »

SEMATECH

SEMATECH (Semiconductor Manufacturing Technology)とは、1987年にアメリカ合衆国で官民合同によって設立された次世代半導体の製造技術の確立へ向けたロードマップを策定し、製造技術の開発を目的としたコンソーシアムである。 設立当初の目的は超LSI技術研究組合によって競争力を高めた日本の事例を元にアメリカの半導体産業の復権を狙った組織だったが、現在では次世代の半導体の開発のために日本からも複数の企業が参加する。 設立当初、アメリカでは競合会社の技術者達が呉越同舟ともいえる共同で共通の技術的課題に挑むという前例は少なく、この研究所の成功によって、この種の形式の組織形態が広まった。.

新しい!!: 極端紫外線リソグラフィとSEMATECH · 続きを見る »

SKハイニックス

ハイニックス製HY57V64820HG型SDRAMチップ SKハイニックス(エスケイハイニックス)は韓国の半導体製造会社。2012年3月にハイニックス半導体から社名を変更した。 AMが収益の90パーセントを占めている.

新しい!!: 極端紫外線リソグラフィとSKハイニックス · 続きを見る »

TSMC

TSMC(英文正式社名:Taiwan Semiconductor Manufacturing Co., Ltd.、中国語正式社名:臺灣積體電路製造股份有限公司)は、中華民国新竹市新竹サイエンスパークに本拠を置く世界最大の半導体製造ファウンダリである。日本では「TSMC」または「台湾集積回路製造」と呼ばれる。創立者は、張忠謀(モリス・チャン)。.

新しい!!: 極端紫外線リソグラフィとTSMC · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 極端紫外線リソグラフィとX線 · 続きを見る »

架橋

化学反応における架橋(かきょう)とは、主に高分子化学においてポリマー同士を連結し、物理的、化学的性質を変化させる反応のことである。 柔らかく弾力性の小さいイソプレンポリマーが硫黄による架橋でタイヤなどに成型できるようになり、さらに架橋を進めることで堅いエボナイトとなるのはその好例である。硫黄による架橋は加硫とよばれている。 また、エポキシ樹脂接着剤の硬化はエピクロロヒドリンによる架橋を利用している。 また、生物の体毛は含硫タンパク質のシステイン同士の架橋によって「コシ」を保っている。パーマ剤はこの架橋を一時的に断ち切ることにより髪を軟化させている。.

新しい!!: 極端紫外線リソグラフィと架橋 · 続きを見る »

次世代リソグラフィ

次世代リソグラフィ(Next-generation lithography NGL)は次世代の集積回路を製造する技術で定義は時代とともに変遷している。.

新しい!!: 極端紫外線リソグラフィと次世代リソグラフィ · 続きを見る »

水冷

水冷(すいれい)とは、水による液冷で、水冷エンジンなどが代表例である。.

新しい!!: 極端紫外線リソグラフィと水冷 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 極端紫外線リソグラフィと波長 · 続きを見る »

液浸

テッパーによる超純水を用いたフォトリソグラフィの模式図 光学顕微鏡による液浸 液浸(えきしん)とは、光学系において液体を使用することによって高性能化を図る手段のことである。液体として油を用いる場合には油浸とよばれる。 ステッパーを用いたフォトリソグラフィによる半導体で製造で微細化を図る手段、光学顕微鏡で分解能を上げる手段などに用いられる。.

新しい!!: 極端紫外線リソグラフィと液浸 · 続きを見る »

消費電力

消費電力(しょうひでんりょく)とは、電気回路において消費される電力のこと。 ワット時で表される。.

新しい!!: 極端紫外線リソグラフィと消費電力 · 続きを見る »

潜像

潜像(せんぞう)とは、何等かの手法を用いて肉眼で見えない(または見えにくい)ように形成した画像を指す。 潜像とは逆に肉眼で見える画像を顕像(けんぞう)という。原則として潜像は顕像化される手段を持ち、最近はむしろそれが存在理由となっている。.

新しい!!: 極端紫外線リソグラフィと潜像 · 続きを見る »

放射光

放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

新しい!!: 極端紫外線リソグラフィと放射光 · 続きを見る »

2017年

この項目では国際的な視点に基づいた2017年について記載する。.

新しい!!: 極端紫外線リソグラフィと2017年 · 続きを見る »

2020年

この項目では、国際的な視点に基づいた2020年について記載する。.

新しい!!: 極端紫外線リソグラフィと2020年 · 続きを見る »

ここにリダイレクトされます:

EUVEUVリソグラフィ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »