ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

フォノン

索引 フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

110 関係: 加法効果培風館原子核吉岡書店場の量子論変位媒質並進演算子 (量子力学)中性子散乱丸善雄松堂平均自由行程弾性弾性波位置エネルギー位相圧縮ネーターの定理ネイチャーハミルトニアンバンド構造メーザーメタマテリアルラマン効果ボース粒子ヘリウムの同位体ブリュアンゾーンブリルアン散乱プランク定数デバイ模型デイヴィッド・J・サウレスフォノンバンドフォノン散乱フォトン制限分極周期周期的境界条件エネルギーコヒーレントフォノンシャルル・エルミートスピン-フォノン相互作用ゼロフォノン線とフォノンサイドバンド凝固免震光子光散乱状態第二量子化...米沢富美子粒子素励起縦波と横波群速度結晶結晶運動量結晶構造生成消滅演算子田崎晴明熱伝導熱伝導率熱電素子熱振動物質相 (物質)相転移DFPT法音響学音速音波非弾性中性子散乱非調和性表面表面フォノン裳華房超音波超流動転移温度膨張量子力学量子化量子化 (物理学)自由振動離散フーリエ変換離散数学零点エネルギー電子電磁場電荷密度MOEMS核子格子格子振動構造比熱容量気体分子運動論波動関数波長波束波数温度準粒子朝倉書店振幅振動振動数摂動意味 インデックスを展開 (60 もっと) »

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: フォノンと加法 · 続きを見る »

効果

効果(こうか、)は、一般的にある特定の行為、動作、操作によって起こった、ある特定の好ましい現象をいう。 科学の実験でおこった現象や営業、宣伝展開、スポーツでのポイントの取得など、さまざまな場面で、「効果があった」という言い方がされる。.

新しい!!: フォノンと効果 · 続きを見る »

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: フォノンと培風館 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: フォノンと原子核 · 続きを見る »

吉岡書店

吉岡書店(よしおかしょてん)とは、物理学、数学の専門書を中心にした出版活動を行う、日本の出版社である。京都府京都市左京区に所在する。 物理学・数学の専門書を中心に出版している。(自費出版にも対応している。) 出版物は、「物理学叢書」・「数学叢書」などのシリーズが有名である。 なお、既に絶版した吉岡書店の出版物に関してはPOD()版として個別注文に対応している。 京都大学吉田(本部)キャンパス北側(百万遍交差点北東)の店舗では大学教科書を中心に古書の販売も行っている。.

新しい!!: フォノンと吉岡書店 · 続きを見る »

場(ば、field、工学分野では電界・磁界など界とも)とは、物理量を持つものの存在が、その近傍・周囲に連続的に影響を与えること、あるいはその影響を受けている状態にある空間のこと。.

新しい!!: フォノンと場 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: フォノンと場の量子論 · 続きを見る »

変位

変位(へんい、displacement)とは、物体の位置の変化のこと。変位の対象は、古典力学での質点の位置であったり、結晶(固体、あるいは結晶表面やそれに吸着した原子、分子など)での原子の位置(原子変位)であったりする。表記は、変位の大きさに着目する x, d のような場合や、変化した前後の位置の差であるという点に注目する Δr という場合がある。物理量としての変位はベクトルで使うことが多く、変位ベクトルと呼ばれる。 物体の位置を表現するには原点からの位置ベクトルを使う方法もある。どこかに基準点を定めるということでは変位もあまり違わないが、局所的な現象をあらわすときには基準位置とそこからの変位で記述したほうが簡単になることもある。変位x と位置ベクトルr は次の式で変換できる。 ここでr0 は基準点の位置ベクトルである。.

新しい!!: フォノンと変位 · 続きを見る »

媒質

媒質(ばいしつ、medium)とは波動が伝播する場となる物質・物体のことである。.

新しい!!: フォノンと媒質 · 続きを見る »

並進演算子 (量子力学)

量子力学における並進演算子とは、ある方向にある大きさだけ粒子や場を移動させる演算子のこと。より具体的には、いかなる変位ベクトル においても対応する並進演算子 \hat(\boldsymbol) が存在し、 の大きさによって粒子や場を移動させる。例えばもし \hat(\boldsymbol) が位置 に位置する粒子に作用すると、その結果として粒子の位置は になる。 並進演算子は線形かつユニタリーである。並進演算子は運動量演算子と密接に関係している。たとえば、 方向に無限小だけ移動させる並進演算子は、運動量演算子の 成分と単純な関係性を持つ。このことにより並進演算子がハミルトニアンと可換、つまり物理法則が並進不変であるとき、運動量保存則が保たれる。これはネーターの定理の一つの例である。.

新しい!!: フォノンと並進演算子 (量子力学) · 続きを見る »

中性子散乱

中性子が物質によって散乱される現象を中性子散乱(neutron scattering)という。 中性子散乱は、原子核散乱と磁気散乱によって起こり、電子による散乱は無視できる程度である。.

新しい!!: フォノンと中性子散乱 · 続きを見る »

丸善雄松堂

丸善雄松堂株式会社(まるぜんゆうしょうどう、)は、日本の大手書店、出版社、専門商社。文化施設の建築・内装、図書館業務のアウトソーシング等も行い、幅広い業務を手がけている。大日本印刷の子会社である丸善CHIホールディングスの完全子会社である。 なお、かつての丸善石油(後のコスモ石油)、「チーかま」など珍味メーカーの丸善、業務用厨房機器メーカーのマルゼン、エアソフトガンメーカーのマルゼンとは無関係である。 本店は東京都中央区日本橋二丁目に、本社事務所は港区海岸一丁目にある。.

新しい!!: フォノンと丸善雄松堂 · 続きを見る »

平均自由行程

平均自由行程(へいきんじゆうこうてい、mean free path)または平均自由行路(へいきんじゆうこうろ)とは、物理学や化学のうち、気体分子運動論において、分子や電子などの粒子が、散乱源(同じ粒子の場合もあれば、異なる粒子の場合もある)による散乱(衝突)で妨害されること無く進むことのできる距離(これを自由行程という)の平均値のことを言う。粒子が平均自由行程だけ運動すると、平均として必ず他の粒子と1回衝突する。 平均自由行程は、その系の特性や粒子により異なってくる。そのため、一般的な場合、ランダムな速度を持った粒子が、散乱源に衝突するまでの距離として、次の式で表記される。 ただし、\ellは平均自由行程(単位m)で、n は散乱源の数密度(m-3)、σは散乱時の有効断面積(m2)である。粒子の速度がマクスウェル分布に従うと仮定される場合、平均自由行程は次式で表せる。.

新しい!!: フォノンと平均自由行程 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

新しい!!: フォノンと弾性 · 続きを見る »

弾性波

弾性波(だんせいは)は、弾性体中を伝わる変形波で、弾性応力波、弾性ひずみ波とも呼ばれる。体積変化を伴う「体積波」と、形状変化は生じるが体積変化を伴わない「等体積波」とに大別される。一次元物体中の圧縮波、引張り波は前者に対応し、剪断波、あるいはねじり波は後者に対応する。弾性波の伝わる速度は弾性係数、ポアソン比と密度に依存する。.

新しい!!: フォノンと弾性波 · 続きを見る »

位置エネルギー

位置エネルギー(いちエネルギー)とは、物体が「ある位置」にあることで物体にたくわえられるエネルギーのこと。力学でのポテンシャルエネルギー(ポテンシャルエナジー、英:potential energy)と同義であり、主に教育の分野でエネルギーの概念を「高さ」や「バネの伸び」などと結び付けて説明するために導入される用語である。 位置エネルギーが高い状態ほど、不安定で、動き出そうとする性質を秘めているといえる。力との関係や数学的な詳細についてはポテンシャルに回し、この項目では具体的な例を挙げて説明する。.

新しい!!: フォノンと位置エネルギー · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: フォノンと位相 · 続きを見る »

圧縮

圧縮(あっしゅく).

新しい!!: フォノンと圧縮 · 続きを見る »

ネーターの定理

物理学において、ネーターの定理(ネーターのていり、Noether's theorem)は、系に連続的な対称性がある場合はそれに対応する保存則が存在する、と述べる定理である。 ドイツの数学者エミー・ネーターによって1915年に証明され、1918年に公表された。.

新しい!!: フォノンとネーターの定理 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: フォノンとネイチャー · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: フォノンとハミルトニアン · 続きを見る »

バンド構造

バンド構造(バンドこうぞう、band structure)は、ポテンシャルや誘電率などの周期的構造によって生じる、波動(電子や電磁波など)に対する分散関係のことである。; 電子バンド構造; フォトニックバンド構造 他にも、フォノニックバンド構造やプラズモニックバンド構造などがある。 ---- 電子バンド構造(でんしバンドこうぞう、electronic band structure)は、結晶などの固体の中で、波として振舞う電子(価電子)に対するバンド構造のことである。.

新しい!!: フォノンとバンド構造 · 続きを見る »

メーザー

メーザー()とは、誘導放出によってマイクロ波を増幅したりコヒーレントなマイクロ波を発生させたりできる装置のこと。(誘導放出によるマイクロ波増幅)の略称である。メーザーはレーザー同様、非常に指向性・単波長性が高い。指向性の高さから、先端科学用ピンポイント加熱装置などに用いられることがある。また、分子構造の解析にも利用される。メーザーはマイクロ波用電子管やマイクロ波用半導体素子よりもはるかに低雑音である。.

新しい!!: フォノンとメーザー · 続きを見る »

メタマテリアル

メタマテリアル(meta-material)とは、光を含む電磁波に対して、自然界の物質には無い振る舞いをする人工物質のことである。「メタマテリアル」という語句自体は「人間の手で創生された物質」を示すが、特に負の屈折率を持った物質を指して用いられることがあり、「電磁メタマテリアル」という表現も認められる。メタマテリアルの人工的構成要素はメタ原子と呼ばれる。.

新しい!!: フォノンとメタマテリアル · 続きを見る »

ラマン効果

ラマン効果(ラマンこうか)またはラマン散乱は、物質に光を入射したとき、散乱された光の中に入射された光の波長と異なる波長の光が含まれる現象。1928年インドの物理学者チャンドラセカール・ラマンとK・S・クリシュナンが発見した。.

新しい!!: フォノンとラマン効果 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: フォノンとボース粒子 · 続きを見る »

ヘリウムの同位体

ヘリウムの同位体(ヘリウムのどういたい)は8種類が知られているが、3Heと4Heの2種類のみが安定である。地球の大気中には、HeとHeは1対100万の割合で存在するEmsley, John.

新しい!!: フォノンとヘリウムの同位体 · 続きを見る »

ブリュアンゾーン

逆格子とその第一ブリユアンゾーン。(a) 正方格子 の場合、(b) 六方格子の場合。 ブリユアンゾーン(Brillouin Zone、略称BZ)とは、逆格子におけるウィグナーザイツ胞のことである。ブリルアンゾーン、ブリユアン域とも言われる。 ある逆格子点の周りの逆格子点の垂直二等分面によって作られる領域は、無数にできるが、その中で最小の領域のことを第一ブリユアンゾーンという。それ以外は、第二ブリユアンゾーン、第三、、と称していく。 ブリュアンゾーンは固体物理学において、波の散乱による回折条件を表現するために広く用いられている。これは、電子のエネルギーバンド理論などの説明に便利である。たとえば波数ベクトルがブリュアンゾーン上にあるとき、電子波のブラッグ反射が起きる。.

新しい!!: フォノンとブリュアンゾーン · 続きを見る »

ブリルアン散乱

ブリルアン散乱(ブリルアンさんらん、ブリリュアン散乱、ブリュアン散乱とも)とは、光が物質中で音波と相互作用し、振動数がわずかにずれて散乱される現象のことである。名称はレオン・ブリルアンに由来する。 この散乱は水や結晶などの媒質中で光が密度変化と相互作用することによって生じる。この際、光の経路とエネルギー (すなわち周波数) が変化する。 散乱の要因となる密度変化は音響モードすなわちフォノンに由来するかもしれないし、磁気モードすなわちマグノン、あるいは温度勾配に由来するかもしれない。 媒質が圧縮されると屈折率が変化し、必然的に光路が変化することは古典的にも説明できる。.

新しい!!: フォノンとブリルアン散乱 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: フォノンとプランク定数 · 続きを見る »

デバイ模型

デバイ模型(デバイもけい、Debye model)とは熱力学と固体物理学において、固体におけるフォノンの比熱(熱容量)への寄与を推定する手法である。1912年にピーター・デバイにより考え出された。デバイ模型では、原子の熱による格子振動を箱の中のフォノンとして扱う。一方、先に発表されていたアインシュタイン模型では、固体を相互作用のない量子的な調和振動子の集まりとして取り扱う。 デバイ模型は低温における比熱が温度の三乗 に比例することを正しく予言する。また、アインシュタイン模型同様、比熱の高温におけるデュロン=プティの法則に従う振る舞いも正しく説明することができる。しかし、格子振動を単純化して扱っているため、中間的な温度における正確性には弱点がある。 デバイ模型についての厳密な取り扱いについては、を参照。.

新しい!!: フォノンとデバイ模型 · 続きを見る »

デイヴィッド・J・サウレス

デイヴィッド・J・サウレス(David J. Thouless、1934年9月21日)は、アメリカ合衆国の物理学者。専門分野は凝縮系物理学。スコットランド、イースト・ダンバートンシャーのベアーズデン(Bearsden)出身。ダンカン・ホールデン、ジョン・M・コステリッツと共に2016年ノーベル物理学賞を共同受賞した。.

新しい!!: フォノンとデイヴィッド・J・サウレス · 続きを見る »

フォノンバンド

フォノンバンドは、フォノン(量子化された格子振動)の分散曲線のこと。 単位格子に1個の原子しかない結晶では、単一のバンドを形成する。 単位格子に2個以上の原子がある結晶では、低エネルギー側の音響バンドと、高エネルギー側の光学バンドが現れる。この2つのバンド間のギャップをフォノンギャップと呼ぶ。.

新しい!!: フォノンとフォノンバンド · 続きを見る »

フォノン散乱

フォノンは物質を伝搬する際にいくつかのメカニズムによって散乱する。 これらの散乱メカニズムは、ウムクラップ散乱、不純物散乱、フォノン-電子散乱、および境界散乱である。 それぞれの散乱メカニズムは、対応する緩和時間の逆数である緩和速度 によって特徴付けることができる。 マティーセンの規則を用いてすべての散乱プロセスを考慮に入れることができる。このとき全緩和時間 は、次のように書くことができる。 ここで はそれぞれウムクラップ散乱、質量数が異なる不純物による散乱、境界散乱、フォノン-電子散乱によるものである。.

新しい!!: フォノンとフォノン散乱 · 続きを見る »

フォトン

フォトン;Photon;Foton.

新しい!!: フォノンとフォトン · 続きを見る »

制限

制限 (せいげん)とは、自由な動きを許さず、ある範囲内に押さえつけることである。「制し、限る」ことを指す。 社会を営む上で、大勢が許容しない行為には制限が設けられている。法律などの規則による制限を規制という。.

新しい!!: フォノンと制限 · 続きを見る »

分極

分極(ぶんきょく)とは、.

新しい!!: フォノンと分極 · 続きを見る »

周期

周期(しゅうき)は、定期的に同じことが繰り返される事象において、任意のある時点の状態に一度循環して戻るまでの期間(時間)または段数のことである。 周期を数える場合は、事象1回の循環を1周期と表す。「2周期」、「3周期」、「半周期」というような使い方をする。.

新しい!!: フォノンと周期 · 続きを見る »

周期的境界条件

周期的境界条件(しゅうきてききょうかいじょうけん、英:Periodic boundary condition)は、境界条件の一つ。周期境界条件とも言う。.

新しい!!: フォノンと周期的境界条件 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: フォノンとエネルギー · 続きを見る »

コヒーレントフォノン

ヒーレントフォノン(Coherent phonon)は、位相の揃った原子・イオンの振動集団のことである。.

新しい!!: フォノンとコヒーレントフォノン · 続きを見る »

シャルル・エルミート

ャルル・エルミート(Charles Hermite、1822年12月24日-1901年1月14日)は、フランスの数学者。1869年からエコール・ポリテクニークの教授、1876年からソルボンヌ大学の教授を務めた。 エルミートは、エルミート内積、エルミート行列やエルミート作用素(エルミート演算子)、エルミート多項式などにその名を残している。また、オイラー、ラグランジュ、アーベル、ガロア等、数多くの偉大な数学者が挑んだ五次方程式の解法を見つけるという難問に挑み、1858年に楕円関数を用いて、初めて一般的な五次方程式を解くことに成功した。1873年にネイピア数 が超越数であることを証明したことでも知られる。この結果を引き継いで、1882年にフェルディナント・フォン・リンデマンにより円周率 が超越数であることが証明され、円積問題が否定的に解決された(エルミート.

新しい!!: フォノンとシャルル・エルミート · 続きを見る »

スピン-フォノン相互作用

磁性体においては、スピン間の交換相互作用やスピンに対する異方性エネルギーは、原子間距離は格子の対称性に依存するので、格子振動によって変化する。このことからスピンとフォノン(格子振動の量子)の間に相互作用が生じる。これを一般にスピン-フォノン相互作用(スピン-フォノンそうごさよう)と呼ぶ。狭義には、スピン-格子緩和に必要なスピン系とフォノン系の間のエネルギーの流れを引き起こす相互作用を指すことがある。 スピン系のエネルギー状態は、一般にスピンハミルトニアンを使って記述され、その中には結晶場の効果としてDS_z^2などの項があるが、格子振動によって局所的に配位子の対称性が壊されると、これ以外にS^+S^+、S^-S^-、S^+S^z、S^-S^zのような型の演算子を持つ項が現れる。これらの項はスピンのエネルギー準位間の遷移を促すから結局フォノンによってスピン状態が変えられたことになり、スピン格子緩和に寄与する。 スピンフォノン相互作用のハミルトニアンは で表され、\tildeは結合の強さを与える四階のテンソルで、\tildeはひずみテンソルである。結晶の対称性に応じてこれを展開すればよいが一般に複雑である。.

新しい!!: フォノンとスピン-フォノン相互作用 · 続きを見る »

ゼロフォノン線とフォノンサイドバンド

局在中心の光吸収スペクトルの形状関数は、温度がT.

新しい!!: フォノンとゼロフォノン線とフォノンサイドバンド · 続きを見る »

凝固

凝固(ぎょうこ、solidification, freezing)とは、物理、化学で液体が固体になるプロセスのこと。 相転移の一つ。融解と反対の意味を示す。また、凝固が起こる温度を凝固点と呼ぶ。水の場合は氷結と言う言い方のほうが一般的である。純粋に温度変化によって固体に変化することを凍結と言う。ヘリウムを除く全ての液体が凍結することが知られており、絶対零度下でも凍結しないものは高圧をかけなければ凍結しない。多くの物体では凝固点と融点が同じ温度であるが、物によっては差が生じ、寒天は85度でとけだし、40度から31度で固まる。 化学変化によってコロイド溶液がゲル化するなどして固化することや、タンパク質のコロイド溶液が凝集したり熱変性によって固まることなども凝固と呼ばれる。揚げ油を廃棄の為にゲル化剤を用いて固体にすることや、牛乳にレモンを入れるとタンパク質が沈殿することがこのことにあたるよ。.

新しい!!: フォノンと凝固 · 続きを見る »

免震

免震(めんしん)は、構造設計(とくに建築構造)の概念であり、一般的に建物の固有周期を伸ばし、建物が受ける地震力を抑制することによって構造物の破壊を防止することを意味する。目的は同じだが類似の用語の制震や耐震とは区別される。 比較すべき概念としてまず挙げられるのが耐震である。耐震は、地震力を受けても破壊しないという意味であり、構造的に頑丈であること・偏心が小さいことなどを目指して安全をはかることである。簡単にいえば耐震は地震力を受けても壊れない(耐える)ことを指し、免震は地震力をなるべく受けない(免れる)ことを指すのである。この他にも制振という概念があり、これは構造体内部に震動を吸収する装置を組み込むことで構造物の破壊を防止することをさす。特に近年の大型建築物などでは、免震・制振・耐震すべてを考慮し、技術を組み合わせることで安全性を高めている。.

新しい!!: フォノンと免震 · 続きを見る »

光子

|mean_lifetime.

新しい!!: フォノンと光子 · 続きを見る »

光散乱

光散乱(ひかりさんらん)とは、光を物質に入射させた時、これを吸収すると同時に光を四方八方に放出する現象をいう。.

新しい!!: フォノンと光散乱 · 続きを見る »

状態

態(じょうたい、)は、 ある事物・対象の、時間とともに変化しうる性質・ありさま等を指す言葉である。 分野によってさまざまな意味で使われる。.

新しい!!: フォノンと状態 · 続きを見る »

第二量子化

二量子化(だいにりょうしか, second quantization)とは場の正準量子化のことである。 量子力学は、粒子の位置と運動量を基本変数に選んだ量子論である。 古典的に場であったもの(電磁場など)だけでなく、古典的には粒子とみなされてきた物理系であっても、場を基本変数にしたほうが良く、適用範囲も広いことが判っている。スピンが関わるような物理系がその典型である。「位置と運動量」を基本変数としてもスピンを記述することができないため、量子力学でスピンが関わるような状況では、スピンを新たな基本変数としてつけ加えることをする。しかし「位置と運動量」ではなく「場」を基本変数として電子を扱うとスピンを自然に記述できる。 場を基本変数とする量子論を場の量子論と呼ぶ。量子力学は、場の量子論を低エネルギー状態に限った場合の近似理論である。 また量子論をフォック空間で考えることを第二量子化と呼ぶこともある。.

新しい!!: フォノンと第二量子化 · 続きを見る »

米沢富美子

米沢 富美子(よねざわ ふみこ、女性、1938年10月19日- )は、日本の理論物理学者、慶應義塾大学名誉教授。専門は物性理論、特に固体物理学。アモルファス研究で国際的に知られる。理学博士(京都大学)(1966年)。大阪府吹田市生まれ。旧姓名、奥 富美子。 日本の女性科学者の草分けとして、一般向けの著書や発言も多い。.

新しい!!: フォノンと米沢富美子 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: フォノンと粒子 · 続きを見る »

素励起

素励起(それいき、elementary excitation)とは、量子力学における基本的な励起のこと。一般に、多体系の励起状態は素励起の複合と考えることができる『物理学辞典』 培風館、1984年。.

新しい!!: フォノンと素励起 · 続きを見る »

縦波と横波

縦波と横波(たてなみとよこなみ)では、縦波(longitudinal wave)と横波(transverse wave)について記述する。 波は媒質の振動が伝播する現象であるが、媒質の振動が波の進行方向に対して平行であるものを縦波といい、垂直であるものを横波という。媒質の種類により縦波が伝播できるか、横波が伝播できるかが決まる。 空気を媒質とする音波は、空気の密度の振動が伝播するもの(疎密波)であり、縦波である。 真空や透明な物体(あるいは電磁場)を媒質とする電磁波(光を含む)は横波である。電磁波が横波であることはマクスウェルの方程式から導かれる。 弾性体を媒質とする弾性波(広義の音波)には縦波と横波の両方が存在する。実際、地震波には縦波であるP波と横波であるS波が存在し、固体中ではその両方が伝播する。.

新しい!!: フォノンと縦波と横波 · 続きを見る »

群速度

重力波における、周波数分散を持つ波束(波群)を表したもの。赤点は'''位相速度'''で動き、緑点は'''群速度'''で動いている。このように水深が深い場合には、水面では位相速度は群速度の二倍になる。図の左から右に動く間、赤点は緑点を二回追い越す。波束の後方(の緑点)で新しい波が出現し、波束の中心に向かって振幅が大きくなり、波束の前方(の緑点)で消えているように見える。水面の重力波においては、ほとんどの場合、水粒子の速度は位相速度よりもずっと小さい。 位相速度と群速度が逆の例。 群速度(ぐんそくど、)とは、複数の波を重ね合わせた時にその全体(波束)が移動する速度のことである。 波(波動)の周波数(角振動数)を 、その波数ベクトルを とすると分散関係 から、群速度 は次のように定義される。 群速度はしばしばエネルギーや情報が伝わる速度と考えられている。多くの場合、これは正しく波形が伝わる信号速度と考えることができる。しかし、波が吸収性のある媒質を伝播する場合には、上のことが常に成り立つとは限らない。 1980年までに多くの実験により、レーザー光のパルスの速度が真空中の光速度を超える速度で特別な物質中を伝播することが確かめられた。だからといって、超光速度の情報伝達はこの場合には不可能である。それは信号の速度は光の速度よりも遅いためである。また、群速度を小さくして0として静止させたり、負の速度としパルスを逆向きに伝播するようにすることができる。しかしながら、これらの場合には光子は媒質中での光速度で伝播を続けている。 位相速度と区別する群速度の概念は1839年にハミルトンにより初めて提案された。1877年にレイリーが において最初に扱った。.

新しい!!: フォノンと群速度 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: フォノンと結晶 · 続きを見る »

結晶運動量

固体物理学における結晶運動量(けっしょううんどうりょう、crystal momentum)または擬運動量(ぎうんどうりょう、quasimomentum、準運動量とも)とは、結晶格子中の電子に関する運動量に似たベクトル量。格子中で電子が持つ波数ベクトル によって以下のように定義される。 ここで は換算プランク定数である。力学的な運動量のように、結晶運動量においても運動量保存則がしばしば適用される。このため物質科学や物理学において解析の手段として有用である。.

新しい!!: フォノンと結晶運動量 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: フォノンと結晶構造 · 続きを見る »

生成消滅演算子

生成消滅演算子(せいせいしょうめつえんざんし、creation and annihilation operators)は、量子的な調和振動子や多体問題など、量子論において基本変数として広く使われる演算子である。 量子論では、正準変数で量子化することでできた量子論を、生成消滅演算子を基本変数にした量子論に書き換えることがしばしば行われる。 消滅演算子は、状態の粒子の数を1だけ減らす演算子である。 生成演算子は、状態の粒子の数を1だけ増やす演算子で、消滅演算子のエルミート共役をとったものである。 生成消滅演算子は様々な粒子の状態に作用することができる。 例えば、量子化学や多体理論において、生成消滅演算子は電子状態に作用される。 ボース粒子における生成消滅演算子の扱いは、量子的な調和振動子における扱いと同様である。 例えば、同じボース粒子状態に関連する生成消滅演算子の交換子は1に等しく、他のすべての交換子は0である。 一方、フェルミ粒子では状況が異なり、交換子のかわりに反交換子が含まれている。.

新しい!!: フォノンと生成消滅演算子 · 続きを見る »

田崎晴明

崎 晴明(たざき はるあき、1959年8月28日 - )は、日本の物理学者。学習院大学理学部教授。専門は理論物理学・数理物理学・統計物理学。「ニセ科学フォーラム」実行委員。東京大学理学博士(1986年)。 名前の「晴」は正確には旧字体である(「青」の下の部分が「月」ではなく「円」)。父は筑波大学名誉教授の田崎明、祖父は神経の跳躍伝導の発見者である田崎一二。.

新しい!!: フォノンと田崎晴明 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: フォノンと熱伝導 · 続きを見る »

熱伝導率

熱伝導率(ねつでんどうりつ、thermal conductivity)とは、温度の勾配により生じる伝熱のうち、熱伝導による熱の移動のしやすさを規定する物理量である。熱伝導度や熱伝導係数とも呼ばれる。記号は などで表される。 国際単位系(SI)における単位はワット毎メートル毎ケルビン(W/m K)であり、SI接頭辞を用いたワット毎センチメートル毎ケルビン(W/cm K)も使われる。.

新しい!!: フォノンと熱伝導率 · 続きを見る »

熱電素子

熱電素子(ねつでんそし、thermoelectric element)とは ゼーベック効果、ペルティエ効果、トムソン効果といった、熱と電気を関係づける現象を利用した素子の総称。応用例に熱電対、電子冷却などがある。 ゼーベック効果は熱エネルギーを電気エネルギーに変換する効果であり、2種類の異種金属(または半導体)の両端を接続し、その両端に温度差を設けると起電力が発生する現象である。特にこの効果を利用した素子のことをゼーベック素子と呼ぶ。この起電力の大きさは、両端の金属(または半導体)の種類と温度差によって決まり、温度測定用の熱電対などに応用されている。また近年ではこの効果を利用した熱電発電の開発が盛んである。熱電発電に使用される素子は温度計測用の金属熱電対と区別するため、熱電変換素子と呼ばれることが多い。また、βアルミナ固体電解質のような固体電解質を利用した電気化学的な手法により熱エネルギーを電気エネルギーに変換する事例もあり、アルカリ金属熱電変換機として使用される。 また、ペルチェ効果は電気エネルギーを熱エネルギーに変換する効果であり、2種類の異種金属(または半導体)の両端を接続し電流を流すと、両端に温度差が生じる現象である。特にペルティエ素子と呼ばれ、精密機器やワインセラーなどの冷却に利用されている。 トムソン効果は、温度勾配を持たせた一様金属(または異種金属)に電流を流したときに発生する、ジュール熱以外の熱の発生(電流を反転させると熱の吸収)する効果のことを言う。.

新しい!!: フォノンと熱電素子 · 続きを見る »

熱振動

熱振動(ねつしんどう、Thermal vibration)は、原子の振動のこと。分子や固体中の原子は運動エネルギーを持っていて、基準となる位置を中心に振動運動をしている。結晶格子上の原子の熱振動は特に格子振動とよばれる。 温度が高くなるほど振動の振幅は大きくなる。絶対零度であっても、不確定性原理から原子の振動は止まっていない(零点振動)。 なお、類似した言葉に熱運動(thermal motion) がある。こちらは微小な粒子がするランダムな運動で、ブラウン運動の原因ともなる。熱運動については熱の記事を参照。.

新しい!!: フォノンと熱振動 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: フォノンと物質 · 続きを見る »

相 (物質)

(そう、phase)とは、化学的組成及び物理的状態が一様な物質系の実体であるIUPAC GOLD phase, http://goldbook.iupac.org/P04528.html。 相とは化学組成及び物理的状態が全体的に一様な形態のものである。 気体、液体、固体は、物質の三つの形態(物質の三態)として知られているが、固体や液体には複数の違った形態をとる場合があることもまた知られている。そこで、これらを区別する別の用語が必要になる―それに相という用語が使用される。 例えば完全に溶解した食塩水はどの部分を取り出しても同一の組成、物性を示すので1つの相だけからなる。氷水はどの部分を取り出しても水分子だけからなる同一の組成を持つが、固体と液体という異なる物性を示す2つの部分があるので、その氷が一つの塊であろと、クラッシュアイスであろうと、2つの相からなる。 牛乳のようなコロイド溶液は肉眼ではどの部分も同じように見えるが、限外顕微鏡でみると乳脂肪からなる油滴の部分と水の部分に分かれているので2つの相からなる。 また、たとえば土壌は、固相、液相(水相)、気相の三相からなり、固相は土壌粒子、気相は土壌空気、水相は土壌水と呼ばれる また、大気は、そのほとんどを気相が占めるが、エアロゾル(厳密にはエアロゾル分散媒)が 清浄な空気でも8 x 10-5 m3-エアロゾル/m3-大気が存在する松田 エアロゾルの濃度,http://kccn.konan-u.ac.jp/konan/kankyo/03matsuda/030304.html。 エアロゾルは、水相と固相の二相からなるので、大気もまた、固相、気相、液相の三相により構成される。 もっとも分かりやすい相の分類は固相、液相、気相であろう。多くの純物質は温度や圧力を変化させた場合、固体、液体、気体の3つの状態をとる。これらそれぞれの状態に対応する相が固相、液相、気相である。ただし、多くの物質は複数の固相を持つ。たとえば.

新しい!!: フォノンと相 (物質) · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: フォノンと相転移 · 続きを見る »

DFPT法

DFPT法は、密度汎関数摂動論(英語:density functional perturbation theory、略称:DFPT)に基づく電子状態計算の方法の一つ。分子または結晶中の原子核の変位に対応するポテンシャル変化を摂動として扱い、摂動状態についても非摂動状態と同様に、拘束条件付き変分原理を満たす形式で記述できるとした理論。周期系に対するDFPTはBaroniらによって1987年に提唱された。DFPTにより、任意の波数ベクトルを持つ原子の変位に伴う全エネルギーの二階微分を高精度で効率よく計算できる(線形応答理論を使う)。これから基準振動のエネルギーまたはフォノンバンド(フォノンバンドからフォノン状態密度も求められる)を得る事ができる。同様の手法を使ってマグノンの計算をさせることも可能。 DFPT法で扱う系が超伝導体の場合、DFPT法で得られたフォノン(格子振動)に関しての情報と、同時に求めた電子状態の情報から、BCS理論の範囲内での超伝導になる転移温度を求めることができる。通常のバンド計算手法でも、フォノン等の情報が従来型の方法で求められれば上記と同様に超伝導転移温度の計算は可能。 また、フォノンの分散だけでなく誘電率、弾性定数、圧電定数などの応答係数の計算にも適用されている。.

新しい!!: フォノンとDFPT法 · 続きを見る »

音響学

音響学(おんきょうがく、acoustics)とは、音の発生、音の伝播、聴覚器官による音響感覚、音楽、騒音 等々、音に関するあらゆる現象を扱う学問でありブリタニカ百科事典「音響学」、その領域は物理学・工学・心理学・生理学など多くの分野にわたる。.

新しい!!: フォノンと音響学 · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: フォノンと音速 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: フォノンと音波 · 続きを見る »

非弾性中性子散乱

非弾性中性子散乱とは、中性子による非弾性散乱のこと。 中性子の非弾性散乱では、エネルギーや運動量が散乱体のものと交換する。 これはフォノンやマグノンなどの素励起の分散関係の測定に用いられる。 得られた分散関係を解析すると、音速やスピン間の交換相互作用が求まる。 原子が独立振動する場合や、可動イオンがプラズマ振動する場合では、分散がほとんど無いエネルギー励起が起こる。 非干渉性の非弾性散乱強度のフーリエ変換からは時空間相関関数の自己部分が、干渉性の非弾性散乱強度のフーリエ変換からは時空間相関関数の全体が求まる。 Category:物理化学の現象 Category:光学 Category:量子力学 Category:散乱.

新しい!!: フォノンと非弾性中性子散乱 · 続きを見る »

非調和性

古典力学における非調和性(ひちょうわせい、anharmonicity)とは、系の調和振動子からのずれのこと。単振動で振動しない振動子は非調和振動子(anharmonic oscillator)と呼ばれ、系は調和振動子に近似することができ、摂動理論を用いて非調和性を計算することができる。非同調性が大きい場合は、他の数値解析を使用する必要がある。 その結果、\omegaは振動子の基本周波数とすると、2\omegaや3\omegaなどの振動数をもつ振動子が現れる。 さらに、振動数\omegaは調和振動子の振動数\omega_0からずれる。 第一近似では、振動数のシフト\Delta \omega.

新しい!!: フォノンと非調和性 · 続きを見る »

表面

表面(ひょうめん、英:surface)は、.

新しい!!: フォノンと表面 · 続きを見る »

表面フォノン

表面フォノン(Surface phonon)とは、固体の表面に局在した格子振動の波を量子化したもの。 表面の局在の程度によって二種類に分類できる。.

新しい!!: フォノンと表面フォノン · 続きを見る »

裳華房

裳華房(しょうかぼう)は、日本の出版社。主に、数学、物理学、化学、生物学、工学といった自然科学関係の教科書や演習書、専門雑誌を出版し、理工系の学生や研究者、技術者、中学校や高等学校の理科教師にはなじみが深い。『ポピュラー・サイエンス』シリーズに代表される一般向けの科学啓蒙書の出版も手がけている。 創業は非常に古く、1700年代前半にはすでに仙台藩の御用板所として活動。当時より算術や暦、気象などに関する書物を出版していた。() 所在地は東京都千代田区四番町8-1。.

新しい!!: フォノンと裳華房 · 続きを見る »

超音波

超音波(ちょうおんぱ、 または )とは人間の耳には聞こえない高い振動数をもつ弾性振動波(音波)である。超音波は可聴域の音と物理的特徴は変わらず、人が聴くことができないというだけである。広義の意味では、人が聞くこと以外の目的で利用される音を意味し、人間に聞こえるかどうかは問わない。超音波はさまざまな分野で利用されている。.

新しい!!: フォノンと超音波 · 続きを見る »

超流動

超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。.

新しい!!: フォノンと超流動 · 続きを見る »

転移温度

転移温度 (てんいおんど、Transition temperature) は相転移を起こす温度のこと。転移温度をTcと書くこともあるが、異なる場合もある(例:反強磁性におけるネール温度をTNと書いたりする)。 超伝導において、常伝導から超伝導、超伝導から常伝導に相転移する温度のことを超伝導転移温度、あるいは転移温度という。または、臨界温度ともいう。記号はどちらもTc(critical temperature)を使う。 このTcは、BCS理論の中でも最も有名な次の理論式、デバイ温度ΘD、状態密度N(0)、相互作用強さVで表される。 Tc.

新しい!!: フォノンと転移温度 · 続きを見る »

膨張

記載なし。

新しい!!: フォノンと膨張 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: フォノンと量子力学 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: フォノンと量子化 · 続きを見る »

量子化 (物理学)

物理学において、量子化(りょうしか、quantization)は古典力学で理解されていた物理現象を"量子力学"の文脈によって説明し直す過程である。これは、場の量子化についても言及する。.

新しい!!: フォノンと量子化 (物理学) · 続きを見る »

自由振動

自由振動(じゆうしんどう、free oscillation、free vibration)とは、ある系がその固有振動数で振動することである。減衰のない自由振動では強制振動とは異なり、系に外部から力が作用しなくても運動しつづける。.

新しい!!: フォノンと自由振動 · 続きを見る »

離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

新しい!!: フォノンと離散フーリエ変換 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: フォノンと離散数学 · 続きを見る »

零点エネルギー

零点エネルギー(れいてんエネルギー、zero-point energy)あるいはゼロ点エネルギーとは、絶対零度においても原子が不確定性原理のために静止せずに一定の振動をする場合のエネルギーである。 零点エネルギーは量子力学の系における最も低いエネルギーである。基底状態のエネルギーと言いかえることもできる。量子力学では、すべての粒子には波動性を持っているため、基底状態であっても振動した状態にあり、零点エネルギーというエネルギーを持つことになる。結果として、絶対零度であっても振動していることになる。たとえば、液体ヘリウムは零点エネルギーの影響で、大気圧中ではどんなに温度を下げても固体になることはない。 零点エネルギーの考えは、1913年のドイツにおいて、アルバート・アインシュタインとオットー・シュテルンによって生み出された。この考えは1900年に書かれたマックス・プランクの式を元にしている。.

新しい!!: フォノンと零点エネルギー · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: フォノンと電子 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: フォノンと電磁場 · 続きを見る »

電荷密度

電荷密度(でんかみつど、charge density)は、単位体積当たりの電荷の分布量(体積密度)。電荷を担うものとしては電子や原子核、イオンのような粒子(素粒子や正孔などを含む)であったり、仮想的に一様に分布する電荷のような場合(→参照:ジェリウムモデル)もある。 金属や半導体では、電荷密度は0と近似できる。 実験的にはX線回折実験による構造解析から得られた結果を最大エントロピー法などを使って実空間での電子の電荷分布(→電子密度に相当)が求まる。また中性子回折実験の結果から同様な手法により原子核の密度が求まる。.

新しい!!: フォノンと電荷密度 · 続きを見る »

MOEMS

デジタルミラーデバイスの画素の模式図 LIGAプロセスで製造された光スイッチ MOEMS(Micro Opto Electro Mechanical Systems)または光MEMSは、機械要素部品、センサ、アクチュエータ、電子回路を一つのシリコン基板、ガラス基板、有機材料などの上に微細加工技術によって集積化した光デバイス。.

新しい!!: フォノンとMOEMS · 続きを見る »

核子

核子(かくし、nucleon)は、原子核を構成する陽子と中性子の総称。原子の原子核は陽子と中性子により構成されていることにより、これらを総称して核子と呼ぶ。陽子も中性子もバリオンの一種であるため、核子もまたバリオンの一種である。 核子はダウンクォーク(d)とアップクォーク(u)により構成される(中性子は2個のdと1個のu、陽子は1個のdと2個のu)。これに対し、ストレンジという重いクォークを含んだ重いバリオンをハイペロンと呼び、Λ(アイソスピン0、uds), Σ(アイソスピン1、uus, uds, dds), Ξ(アイソスピン1/2、uss, dss), Ω(アイソスピン0, sss)と呼ばれる。また、原子核を構成する粒子にハイペロンを含んだ核をハイパー核と呼ぶ。.

新しい!!: フォノンと核子 · 続きを見る »

格子

格子(こうし)は周期的に並んだ区切り、仕切りのこと。格子戸、鉄格子などとして一般的にも使われる。.

新しい!!: フォノンと格子 · 続きを見る »

格子振動

格子振動(こうししんどう、英語:lattice vibration)は、結晶中の原子(格子)の振動のこと。振動の駆動力は熱であるが、絶対零度においても、不確定性原理から原子(格子)は振動している(零点振動)。 格子振動は、熱伝導の原因の一つであり、比熱とも関係が深い(→デバイ比熱)、また格子振動によって電子が散乱される(→電気伝導に影響)。 格子振動は、従来型の超伝導と深く関わっている(→BCS理論)。 量子化された格子振動がフォノン。 振動という意味では、単独の原子や、分子、クラスター、表面などでの各原子も振動していて、これらを量子化したものもフォノンである。.

新しい!!: フォノンと格子振動 · 続きを見る »

構造

構造(こうぞう、英:structure)とは、ひとつのものを作りあげている部分部分の組み合わせかた。ひとつの全体を構成する諸要素同士の、対立・矛盾・依存などの関係の総称。複雑なものごとの 部分部分や要素要素の 配置や関係。.

新しい!!: フォノンと構造 · 続きを見る »

比熱容量

比熱容量(ひねつようりょう、英語:specific heat capacity)とは、圧力または体積一定の条件で、単位質量の物質を単位温度上げるのに必要な熱量のこと。単位は J kg−1 K−1 もしくは J g−1 K−1 が用いられる。水の比熱容量(18℃)は、1 cal g−1 K−1.

新しい!!: フォノンと比熱容量 · 続きを見る »

気体分子運動論

気体分子運動論(きたいぶんしうんどうろん、)は、原子論の立場から気体を構成する分子の運動を論じて、その気体の巨視的性質や行動を探求する理論である。気体運動論や分子運動論とも呼ばれる。最初は単一速度の分子群のモデルを使ってボイルの法則の説明をしたりしていたが、次第に一般化され、現今では速度分布関数を用いて広く気体の性質を論ずる理論一般をこの名前で呼ぶようになっている。.

新しい!!: フォノンと気体分子運動論 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: フォノンと波動関数 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: フォノンと波長 · 続きを見る »

波束

波束(はそく、wave packet, wave train)は、時間的・空間的なサイズが有限な波のこと。.

新しい!!: フォノンと波束 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: フォノンと波数 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: フォノンと温度 · 続きを見る »

準粒子

準粒子 (quasiparticle) とは、その振る舞いがある系の中で一つの粒子として特徴付けることのできる離散的な現象の集団を言う。大雑把には、ある粒子とその粒子の局所環境への効果を合わせたものと定義することができる。 物質中の粒子間には複雑な相互作用が働いている。その相互作用を切って自由粒子として扱うことは原理的に不可能である。逆に言えば、相互作用によって粒子の集団運動がつくる励起は生まれる。よって物質中では粒子という概念自体が必ずしも自明ではない。ところが、複雑な相互作用があるにもかかわらず、あたかも特定の運動量やエネルギーを持った自由粒子が独立に運動しているように振る舞い、着目していない粒子が背景(真空)であるように扱える場合がある。このような粒子は相互作用の効果を繰り込んだものであり、「相互作用の衣を着た粒子」という意味で「準粒子」と呼ばれる。 準粒子が系に及ぼす効果もまた準粒子である。 準粒子の全体的な性質は単一の自由粒子のように振る舞う。この概念は凝縮系物理において最も重要である。これは量子多体問題を単純化できると知られている数少ない方法の一つである。同様に、これは他のあらゆる数の多体系にも適用することができる。.

新しい!!: フォノンと準粒子 · 続きを見る »

朝倉書店

朝倉書店(あさくらしょてん)は、日本の出版社。 1929年(昭和4年)創業の賢文館が前身で、1944年(昭和19年)に株式会社朝倉書店設立。創業者は同文館出身の朝倉鑛造。 理学・工学・医学・農学・人文科学・家政学などの学術専門書および理工系の大学教科書を出版。.

新しい!!: フォノンと朝倉書店 · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: フォノンと振幅 · 続きを見る »

振動

振動(しんどう、oscillation、vibration)とは、状態が一意に定まらず揺れ動く事象をいう。英語では、重力などによる周期が長い振動と、弾性や分子間力などによる周期の短い振動は別の語が充てられるが、日本語では周期によらず「振動」という語で呼ばれる。周期性のある振動において、単位時間あたりの振動の数を振動数(または周波数)、振動のふれ幅を振幅、振動の一単位にかかる時間を周期という。 振動は、同じ場所での物質の周期的な運動であるが、物理学においてさまざまな現象の中に現れ、基本的な概念の一つとして扱われる。物理的にもっとも単純な振動は単振動である。また、振動する系はそれぞれ固有振動(数)をもつ。振動の振幅を減少させる要因がある場合には、振動が次第に弱まる減衰振動となる。外部から一定の間隔で力を与えることなどにより振動を引き起こすことを強制振動とよぶ。強制振動の振動数がその系の固有振動数に近い場合、共振(または共鳴とも)を引き起こす。古典物理学だけでなく、電磁気学では電気回路や電場・磁場の振動を扱い、またミクロな現象を扱う現代物理学などにおいても、振動は基本的な性質である。 波動現象は、振動が時間的変化にとどまらず空間的に伝わっていく現象であり、自然現象の理解になくてはならない基礎概念へと関連している。.

新しい!!: フォノンと振動 · 続きを見る »

振動数

振動数(しんどうすう、英語:frequency)は、物理学において等速円運動あるいは単振動などの振動運動や波動が単位時間当たりに繰り返される回数である。振動数は、運動の周期の逆数であり、単位はヘルツ(Hz)原康夫 『物理学通論 I』 第I部3章3.4 単振動、学術図書出版、1988年。 「周波数」も英語では frequency(ラテン語で「“frequentia”」から) であり根本的には同じことであるが、「周波数」がおもに電気振動(電磁波や振動電流)のような電気工学・電波工学または音響工学などで用いられる工学用語であるのに対し、力学的運動など自然科学(理学)における物理現象には「振動数」が用いられることが多い。一般的には記号 f を用いて表されるが、光の振動数などはν(ニュー)の記号を用いられることが多い。 等速円運動においては、振動数は「回転速度(回転数)」と同じ数値になるが、単位は異なる。.

新しい!!: フォノンと振動数 · 続きを見る »

摂動

摂動(せつどう、 perturbation)とは、一般に力学系において、主要な力の寄与(主要項)による運動が、他の副次的な力の寄与(摂動項)によって乱される現象である。摂動という語は元来、古典力学において、ある天体の運動が他の天体から受ける引力によって乱れることを指していたが、その類推から量子力学において、粒子の運動が複数粒子の間に相互作用が働くことによって乱れることも指すようになった。なお、転じて摂動現象をもたらす副次的な力のことを摂動と呼ぶ場合がある。.

新しい!!: フォノンと摂動 · 続きを見る »

意味

意味(いみ)とは、次のような概念である。.

新しい!!: フォノンと意味 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: フォノンと数 · 続きを見る »

ここにリダイレクトされます:

フォノン状態密度フォノニクス光学フォノン縦型フォノン音子音響フォノン音響量子音量子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »