ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

質量

索引 質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

63 関係: 加速度力 (物理学)力学原子論天秤ばかり定義密度不変質量万有引力一般相対性理論体積体重計圧力化学ポンド (質量)メトリックスラグトンプランク質量ヒッグス粒子ヒッグス機構テイラー展開ニュートン力学ニュートンの運動方程式分子アメデオ・アヴォガドロエネルギーエトヴェシュ・ロラーンドキログラムグラムスラグ (単位)円運動光速動力学固体固有時等価原理物体物理単位物理学物質量特殊相対性理論運動の第2法則運動エネルギー運動量静止エネルギー質量の比較質量保存の法則重力重力加速度重力子...重さ自由落下電子電子の静止質量速度比例液体温度振り子有効質量慣性 インデックスを展開 (13 もっと) »

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: 質量と加速度 · 続きを見る »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 質量と力 (物理学) · 続きを見る »

力学

力学(りきがく、英語:mechanics)とは、物体や機械(machine)の運動、またそれらに働く力や相互作用を考察の対象とする学問分野の総称である。物理学で単に「力学」と言えば、古典力学またはニュートン力学のことを指すことがある。 自然科学・工学・技術の分野で用いられることがある言葉であるが、社会集団や個人の間の力関係のことを比喩的に「力学」と言う場合もある。.

新しい!!: 質量と力学 · 続きを見る »

原子論

原子論(げんしろん、atomism)とは、“すべての物質は非常に小さな、分割不可能な粒子(Atom、原子)で構成されている”、とする仮説、理論、主義などのこと。.

新しい!!: 質量と原子論 · 続きを見る »

天秤ばかり

天秤ばかり(てんびんばかり、英語:balance、balance scale)とは、てこの原理を利用して、質量を量りたい物体と、錘とをつりあわせることによって、物体の質量を測定する器具(秤)。天秤による測定の基準となる錘を分銅という。上皿天秤のように、測りたい物体とおなじ重さの分銅を用いるものと、一定の重さの分銅を用いて、支点からの距離を変えることによって測定するものとに分かれる。狭義では天秤ばかりは前者のみを指し、後者は竿ばかりと呼ばれる。電子天秤も内部的には天秤ばかりとしての構造を有し、天秤と呼ばれる。ただし、分銅ではなく電気的な力によって天秤をつり合わせている点で、上記の古典的な天秤ばかりとは異なると言える。.

新しい!!: 質量と天秤ばかり · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 質量と定義 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 質量と密度 · 続きを見る »

不変質量

不変質量 (invariant mass) は、ローレンツ変換によって関連付けられた全ての基準系で不変になるような、系の固有の質量である。不変質量は、系が全体として静止しているときの、系の全エネルギーを光速の二乗で割った値と等しい。 静止質量 (rest mass)、固有質量 (proper mass)、内在質量 (intrinsic mass)、または単に質量 (mass) とも言う。.

新しい!!: 質量と不変質量 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 質量と万有引力 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 質量と一般相対性理論 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 質量と体積 · 続きを見る »

体重計

体重計 体重計(たいじゅうけい)とは、動物の重量を量る道具である。ヒト用かつ家庭用の体重計はヘルスメーターとも言う。.

新しい!!: 質量と体重計 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 質量と圧力 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 質量と化学 · 続きを見る »

ポンド (質量)

ポンド()またはパウンド()は、ヤード・ポンド法などにおける質量の単位である。1959年以降(ただし日本では1993年以降)は、1 ポンド.

新しい!!: 質量とポンド (質量) · 続きを見る »

メトリックスラグ

メトリックスラグ (mettric slug) は、MKS重力単位系の質量の単位である。1939年、ビアズレー (N.) が考案した。 スラグ (slug) とは、ヤード・ポンド法重力単位系の質量単位である。そのメートル法(MKS単位系)版であることから、メトリックスラグと呼ぶ。 別名マグ (mug.

新しい!!: 質量とメトリックスラグ · 続きを見る »

トン

トン(tonne, ton, 記号: t)は、質量の単位である。SI(国際単位系)ではなく、分・時・日、度・分・秒、ヘクタール、リットル、天文単位とともに「SI単位と併用される非SI単位」である(SI併用単位#表6 SI単位と併用される非SI単位)。 そのほか、質量以外の各種の物理量に対して使われるトンもある。.

新しい!!: 質量とトン · 続きを見る »

プランク質量

プランク質量(プランクしつりょう、Planck mass)は、プランク単位系における質量の単位である。プランク質量 mP の値は以下である。 ここで、括弧内に書かれた数字は、最後の2桁についての標準不確かさを示す。つまり、 という意味である。c は真空中の光速度、\hbarはディラック定数、G は万有引力定数である。 プランク質量はコンプトン波長を\piで割ったものとシュヴァルツシルト半径とが一致する質量である。その長さはプランク長である。 他の自然単位の値が非常に小さいか大きいかであるのとは異なり、プランク質量の値はほぼ人間が取り扱えるスケール内にある。すなわち、1プランク質量は一般的なコピー用紙(坪量 64g)を 1mm×0.3mm に切ったものの質量くらいである。.

新しい!!: 質量とプランク質量 · 続きを見る »

ヒッグス粒子

ヒッグス粒子(ヒッグスりゅうし、 ヒッグス・ボソン)とは、1964年にピーター・ヒッグスが提唱したヒッグス機構において要請される素粒子である。 ヒッグス自身は「so-called Higgs boson(いわゆる ヒッグス粒子と呼ばれているもの)」と呼んでおり、他にも様々な呼称がある。 本記事では便宜上ヒッグス機構・ヒッグス粒子の双方について説明する。質量の合理的な説明のために、ヒッグス機構という理論体系が提唱されており、その理論内で「ヒッグス場」や「ヒッグス粒子」が言及されているという関係になっているためである。.

新しい!!: 質量とヒッグス粒子 · 続きを見る »

ヒッグス機構

ヒッグス機構(ヒッグスきこう、Higgs mechanism)とは、ピーター・ヒッグスが1964年に提唱した、ゲージ対称性の自発的破れと質量の生成に関する理論である。 ゲージ理論において、ゲージ場は質量項を持つことができないが、この理論では、ヒッグス場が真空期待値を持つことで系の対称性を破り、ゲージ粒子はヒッグス場との相互作用を通して質量を獲得するものと考える。 ただし、この理論によれば真空と同じ量子数を持つスカラー粒子が現れるとされるので、この理論が現実の物理に適用できるものだと証明するためには、その粒子(ヒッグス粒子)を実験的に見つけることが課題になる『改訂 物理学事典』 p.1710 「ヒグス機構」。 この機構(メカニズム)は、まず1962年にフィリップ・アンダーソンによって提唱され、類似のモデルが1964年に3つの独立したグループによって発展させられた。すなわち (1) ロベール・ブルー:en:Robert Broutとフランソワ・アングレール 、(2) ピーター・ヒッグス、および(3):en:Gerald GuralnikとC. R. HagenとTom Kibbleの3グループである。よって、このメカニズムは次のような様々な呼称で呼ばれている。Brout–Englert–Higgs mechanism(ブルー・エングレール・ヒッグス・メカニズム)、あるいはEnglert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, Anderson–Higgs mechanism, Higgs–Kibble mechanism(アブドゥッサラームによる)あるいはできるだけ頭文字だけにしてABEGHHK'tH mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooftの頭文字。ピーター・ヒッグスが他の研究者たちに敬意を払ってこう呼んだ。)。.

新しい!!: 質量とヒッグス機構 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 質量とテイラー展開 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 質量とニュートン力学 · 続きを見る »

ニュートンの運動方程式

ニュートンの運動方程式(ニュートンのうんどうほうていしき、英語:Newtonian Equation of motion)は、非相対論的古典力学における一質点の運動を記述する運動方程式のひとつであり、以下のような形の2階微分方程式である。 ここで、mは質点の質量、\boldsymbol は質点の位置ベクトル、\boldsymbol は質点の加速度、\boldsymbol は質点にかかる力、t は時間である。\boldsymbol, \boldsymbolはベクトル量、mはスカラー量。.

新しい!!: 質量とニュートンの運動方程式 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 質量と分子 · 続きを見る »

アメデオ・アヴォガドロ

アメデオ・アヴォガドロ(アメデーオ・アヴォガードロ、Lorenzo Romano Amedeo Carlo Avogadro, Conte di Quaregna e Cerreto、1776年8月9日 - 1856年7月9日)は、サルデーニャ王国(現:イタリア)トリノ出身の物理学者、化学者。分子の研究に貢献し、1811年に発見した同圧力、同温度、同体積の全ての種類の気体には同じ数の分子が含まれるアボガドロの法則で名高い。 1809年にヴェルチェッリ王立大学の物理学教授を務め、1820年にはトリノ大学で理論物理学の初代教授を務めた。.

新しい!!: 質量とアメデオ・アヴォガドロ · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 質量とエネルギー · 続きを見る »

エトヴェシュ・ロラーンド

トヴェシュ・ロラーンド(Eötvös Loránd, 1848年7月27日 - 1919年4月8日)はハンガリーの物理学者である。正式には、ヴァーシャーロシュナメーニ男爵エトヴェシュ・ロラーンド(Vásárosnaményi báró Eötvös Loránd)。日本では姓をエートヴェシュ、エトベシュ、エトベスと表記したり、名をローランドと表記しているのも見掛けるが、これはハンガリー人の氏名を英語やドイツ語風に発音した誤読である。 重力質量と慣性質量の等価性を示したエトヴェシュの実験で知られる。1890年重力偏差計を発明した。移動体上で重力測定すると、みかけの重力加速度が静止時と異なる現象はエトヴェシュ効果(エトベス効果)と呼ばれる。気泡に働く浮力と表面張力の比である無次元量のエトヴェシュ数(エトヴェス数)も、エトヴェシュの名に因んでいる。現存する大学の中ではハンガリーで最も古い国立ブダペスト大学(旧王立ハンガリー・パーズマニュ・ペーテル大学)は1950年9月15日にエトヴェシュを記念してエトヴェシュ・ロラーンド大学 (Eötvös Loránd Tudományegyetem) と改名された。 詩人で、自由主義的な政治家、エトヴェシュ・ヨージェフの息子に生まれた。 ハイデルベルク大学などで学んだ後、ブダペスト大学の教授となり、さらにハンガリーの教育大臣となって半世紀にわたってハンガリーの学術を指導した。 2015年、エトヴェシュが残した研究論文がユネスコ記憶遺産に登録された。.

新しい!!: 質量とエトヴェシュ・ロラーンド · 続きを見る »

キログラム

ラム(kilogram, kilogramme, 記号: kg)は、国際単位系 (SI) における質量の基本単位である。国際キログラムともいう。 グラム (gram / gramme) はキログラムの1000分の1と定義される。またメートル系トン (tonne) はキログラムの1000倍(1メガグラム)に等しいと定義される。 単位の「k」は小文字で書く。大文字で「Kg」と表記してはならない。.

新しい!!: 質量とキログラム · 続きを見る »

グラム

ラム(gramme, gram, 記号: g)は、質量の単位である。国際単位系(SI)において、キログラム(kg)の1000分の1の質量と定義されている。 一円硬貨の質量が、1.0 g である。 メートル法によって新しい質量の単位として定められた。「グラム」という名称は、ラテン語のgrámmaに由来する。元々はグラムが質量の基本単位で、「最大密度にある蒸留水1ミリリットルの質量」と定義された。しかし、作られた原器はキログラムの質量を示すもので、その質量が1キログラムと再定義され、グラムはその1000分の1ということになった。 CGS単位系では質量の基本単位であったが、MKS単位系およびそこから派生した国際単位系ではキログラムが基本単位とされている。ただし、SI接頭辞はキログラムではなくグラムにつけることとなっており、例えばキログラムの10−6倍は、「マイクロキログラム」(µkg) ではなく「ミリグラム」(mg) となる。なお、106 g (.

新しい!!: 質量とグラム · 続きを見る »

スラグ (単位)

ラグ (slug) は、ヤード・ポンド法の英国重力単位系(BG)における質量の単位である。別名ジーポント。 重力単位系では質量ではなく重量(力)を基本単位とするため、質量は組立単位となる。SIのような絶対単位系で力の単位が質量と加速度の単位から組み立てられるの逆で、重力単位系では、質量の単位は力と加速度の単位から組み立てられる。すなわち、1スラグは1 lbf(重量ポンド)の力によって 1 ft/s(フィート毎秒毎秒)の加速度が生じる質量、と定義される。単位記号で書くと、slug.

新しい!!: 質量とスラグ (単位) · 続きを見る »

円運動

円運動(えんうんどう、circular motion)とは、物体の運動の向きとは垂直な方向に働く力によって引き起こされる運動である。特に中心力(常に円軌道の中心を向き、大きさが距離のみに依存する力)が働くことにより引き起こされる。 とくに円運動は天体の運動の基本であり、ニコラウス・コペルニクスやヨハネス・ケプラーの地動説の基礎となった。円運動は地上でもしばしば観測される。たとえばひもにおもりをつけて振り回すと円軌道を描く。.

新しい!!: 質量と円運動 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 質量と光速 · 続きを見る »

動力学

動力学(どうりきがく、dynamics)は、物理学における古典物理学の一つの分野で、物体の動作における力の影響を扱うものである。 もとは力学 の一部から力の要因を考慮するものとしないもの(運動学、kinematics)とに区別され、後に力の要因を考慮する力学から平衡状態を扱う静力学(statics)と非平衡状態をあつかう動力学へ区別された。量子力学においては、動力学は量子電磁力学や量子色力学のように、どのように力が量子化されているか、という形で取り扱われている。.

新しい!!: 質量と動力学 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: 質量と固体 · 続きを見る »

固有時

固有時(こゆうじ)とは、物理現象・物理法則を支配する時間を言う。特殊相対性理論・一般相対性理論により,ある観測者から見て移動する座標系若しくは重力等で歪んだ時空座標系の下でも,(時空点ごとに固有・不変となる)固有時を用いることにより物理法則は普遍形・不変形を示す。 本稿では特殊相対性理論に基づく観点の下で固有時の説明を行う。 ---- 固有時(こゆうじ)とは、注目する物体に伴って移動する座標系で計測した時間のことである。一般に記号はτを用いる。ニュートン力学まで用いられた全宇宙で一意な絶対時間に代わり、注目すべき物体の固有時が物理法則の記述に用いられるようになった。 アインシュタインは一般相対性理論に基づく観点から、「私は全宇宙に時計を置いた」と述べている。.

新しい!!: 質量と固有時 · 続きを見る »

等価原理

等価原理(とうかげんり、)は、物理学における概念の一つで、重力を論じる一般相対性理論の構築原理として用いられる他に、異なる座標系での物理量測定の一致性についての議論でも登場する。.

新しい!!: 質量と等価原理 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 質量と物体 · 続きを見る »

物理単位

物理単位(ぶつりたんい)とは、種々の物理量を表すための単位である。.

新しい!!: 質量と物理単位 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 質量と物理学 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

新しい!!: 質量と物質量 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 質量と特殊相対性理論 · 続きを見る »

運動の第2法則

運動の第2法則(うんどうのだい2ほうそく、Newton's second law)は、ニュートン力学の基礎をなす三つの運動法則の一つ。第2法則は運動の第1法則が成り立つ座標系、すなわち慣性系における、物体の運動状態の時間変化と物体に作用する力の関係を示す法則である。ときに第2法則のみを指してニュートンの法則と呼ばれることもある。 運動の第2法則はアイザック・ニュートンによって発見され、1687年に出版した『自然哲学の数学的諸原理』において発表された。 運動の第2法則から、ニュートン力学における物体の運動方程式(ニュートンの方程式)が導かれる。ニュートン自身は運動方程式を明示的に用いてはおらず、ニュートンの方程式はレオンハルト・オイラーによって、1749年の (『天体の運動一般に関する研究』)で初めて公表された。.

新しい!!: 質量と運動の第2法則 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: 質量と運動エネルギー · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 質量と運動量 · 続きを見る »

静止エネルギー

静止エネルギー(せいしエネルギー、)は、アインシュタインの特殊相対性理論によって示された、質量が存在することにより生じるエネルギー。質量 m\, の物体は、光速 c\, を用いて、 で表される静止エネルギー E_0\, を持つ。運動エネルギーやポテンシャルエネルギーとは異なるもので、質量が存在するだけで生じる。 この式は、質量を持つ物体には膨大なエネルギーが内在していることを示している。そして、実際に質量をエネルギーに変換することは可能である。例えば、電子と陽電子を衝突させると、これらの粒子が対消滅し、元の質量に応じたエネルギーが発生する。また、原子核反応でエネルギーが発生する場合には、反応後の質量はわずかに減少するし(質量欠損)、一般の化学反応でも、非常にわずかではあるが質量が変化する。.

新しい!!: 質量と静止エネルギー · 続きを見る »

質量の比較

本項では、質量の比較(しつりょうのひかく)ができるよう、昇順に表にする。.

新しい!!: 質量と質量の比較 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: 質量と質量保存の法則 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 質量と重力 · 続きを見る »

重力加速度

重力加速度(じゅうりょくかそくど、gravitational acceleration)とは、重力により生じる加速度である。.

新しい!!: 質量と重力加速度 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: 質量と重力子 · 続きを見る »

重さ

重さ(おもさ)とは、その物体に働く重力の大きさ、および、慣性力の大きさを言う。また、力から転じて(力とは次元が異なる)重量を表す意味でも用いられる。.

新しい!!: 質量と重さ · 続きを見る »

この記事では量(りょう、)について解説する。.

新しい!!: 質量と量 · 続きを見る »

自由落下

自由落下(じゆうらっか、)とは、物体が空気の摩擦や抵抗などの影響を受けずに、重力の働きだけによって落下する現象。真空中での落下。重力以外の外力が存在しない状況下での運動のことである。人工衛星や月、地球などの天体の運動がこれにあたる。一様な重力が働く状況下において初速ゼロで運動を開始した物体の等加速度直線運動のことを特に自由落下と呼び、初速度をもって運動する斜方投射などと区別することがある。.

新しい!!: 質量と自由落下 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 質量と電子 · 続きを見る »

電子の静止質量

電子の静止質量(でんしのせいししつりょう、記号: )は、静止した電子のである。物理学の基本定数の一つであり、アボガドロ定数との関連のため化学においても非常に重要である。およそキログラムまたはおよそ原子質量単位の値を持ち、およそ ジュールあるいはおよそ0.511メガ電子ボルトのエネルギーと等価である。.

新しい!!: 質量と電子の静止質量 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 質量と速度 · 続きを見る »

比(ひ、ratio)とは2つ(または3つ以上)の数の関係を表したもの。数 a, b について、その比は a:b で表され、「a対b」とよむ。a を前項、b を後項(こうこう)という。また、前項と後項を入れ替えた b:a を元の比の逆比または反比という。3数以上の場合も a:b:c のように表し、特に連比(れんぴ)という。 例えば、テレビ受像機には様々な大きさがあるが、横の長さを4等分したものと縦の長さを3等分したもの, あるいは, 横の長さを16等分したものと縦の長さを9等分したものとが等しくなるのは, どの大きさのテレビでも変わらない。これをまとめて, それぞれ 4:3, 16:9 で表す。 比において、前項と後項に(0以外の)同じ数をかけたものも同じ比である。つまり、a:b.

新しい!!: 質量と比 · 続きを見る »

比例

比例(ひれい、proportionality)とは、変数を用いて書かれる二つの量に対し一方が他方の定数倍であるような関係の事である。.

新しい!!: 質量と比例 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 質量と液体 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 質量と温度 · 続きを見る »

振り子

振り子(ふりこ、pendulum)とは、空間固定点(支点)から吊るされ、重力の作用により、揺れを繰り返す物体である。支点での摩擦や空気抵抗の無い理想の環境では永久に揺れ続ける。時計や地震計などに用いられる。 振り子についての最初の研究記録はアリストテレス、ギリシャ人の哲学者による。さらに 17世紀、ガリレオにはじまる物理学者らよる観測の結果、等時性が発見され時計に使用されるようになった。 同じように等時性を示す装置として、ばね振り子やねじれ振り子などがある。.

新しい!!: 質量と振り子 · 続きを見る »

有効質量

有効質量(ゆうこうしつりょう、effective mass)とは、何らかの物理現象を、「古典力学における質量を含む物理法則(比較的簡単な現象の場合が多い)」のアナロジーで現象論的に理解しようとしたときに出てくる、質量相当のパラメータの総称である。結晶中の電子の物性を用いる上で用いられる「有効質量」を指すことがほとんどだが、結晶中の電子の物性とは異なる物理現象にもこの概念を持ち込むことがある。 「結晶中の電子の有効質量」以外の「有効質量」としては、例えば、原子間力顕微鏡のカンチレバーの機械的な振動(古典力学の現象)を、よりやさしい(古典力学の)現象である、フックの法則に置き換えて考えるときに、フックの法則における質量に相当するパラメーターを有効質量と呼ぶことがあるhttp://spin100.imr.tohoku.ac.jp/oomichiNOTE.pdf。 以下、本節では、「結晶中の電子の有効質量」について説明する。.

新しい!!: 質量と有効質量 · 続きを見る »

慣性

慣性(かんせい、英語:inertia)とは、ある物体が外力を受けないとき、その物体の運動状態は慣性系に対して変わらないという性質を表す。惰性ともいう。 静止している物体に力が働かないとき、その物体は慣性系に対し静止を続ける。運動する物体に力が働かないとき、その物体は慣性系に対し運動状態を変えず、等速直線運動を続ける。これは慣性の法則(運動の第1法則)として知られている。 力が働いているときではニュートンの運動方程式より 慣性が大きければ、同じ力 \vec を加えても加速度 \vec は小さくなる。これは質量 \boldsymbol が大きいということである。この質量 \boldsymbol は、各物体の慣性の大小を表す量であり、慣性質量と呼ばれる。 物体の回転を考えるときにも、回転のしやすさの大小(慣性モーメント)として、広い意味での慣性を定義することが出来る。 アイザック・ニュートンは慣性を定式化することにより、鳥が何故、地球の表面から取り残されないのか、地球が何故止まらないで動き続けているのか、という地動説の疑問に答え、地動説の正しさを証明させた。.

新しい!!: 質量と慣性 · 続きを見る »

ここにリダイレクトされます:

慣性質量重力質量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »