ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

平面波

索引 平面波

平面波(へいめんは、Plane wave)とは、等位相面が波数ベクトルを法線ベクトルとする等値平面から成る周期関数のことである。.

45 関係: 力 (物理学)基底関数原子原子軌道単位行列単位胞実数富山小太郎局在基底平行六面体交換法則応力ハミルトニアンバンド計算リチャード・P・ファインマンプログラム (コンピュータ)フーリエ変換フーリエ級数ファインマン物理学周期関数オイラーの公式シュレーディンガー方程式サイエンス社共立出版固有状態球面波第一原理バンド計算等位集合直交化された平面波運動量複素共役規格化関数 (数学)自乗可積分函数自由粒子電荷電荷密度Pulay補正格子 (数学)正弦波波動関数波動方程式波数法線ベクトル混合基底

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 平面波と力 (物理学) · 続きを見る »

基底関数

基底関数(きていかんすう、basis function)とは、関数空間の基底ベクトルのことである。すなわち対象となる空間に属する全ての元(関数)は、この基底関数の線型結合で表される。 線形基底展開(linear basis expansion)とは、h_m(X) を基底関数として、下記の形で展開する事。 例えば、実数値関数のフーリエ変換(コサイン変換・サイン変換)ではコサイン関数もしくはサイン関数、ウェーブレット変換ではウェーブレット関数とスケーリング関数、スプライン曲線では区分的多項式が基底関数として用いられる。.

新しい!!: 平面波と基底関数 · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 平面波と原子 · 続きを見る »

原子軌道

原子軌道(げんしきどう、, AO)は、原子核のまわりに存在する1個の電子の状態を記述する波動関数のことである。電子軌道とも呼ばれる。 その絶対値の二乗は原子核のまわりの空間の各点における、電子の存在確率に比例する。 ここでいう軌道 (orbital) とは、古典力学における軌道 (orbit) とは意味の異なるものである。量子力学において、電子は原子核のまわりをまわっているのではなく、その位置は確率的にしか分らない。.

新しい!!: 平面波と原子軌道 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 平面波と単位行列 · 続きを見る »

単位胞

単位胞(たんいぼう、Unit cell)とは、結晶中の空間格子の格子点がつくる平行6面体のうち、空間格子の構造単位として選ばれたものである。単位格子と言うこともある。つまり、単位胞は結晶構造の周期パターンの単位となる平行6面体であり、結晶構造は単位胞の敷き詰めで表現される。 単位胞の頂点から伸びる、3つの稜を表す3本のベクトル〈a, b, c〉は基本ベクトルと呼ばれる。ベクトルの大きさ〈距離〉と単位ベクトルの成す角、α.

新しい!!: 平面波と単位胞 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 平面波と実数 · 続きを見る »

富山小太郎

富山 小太郎(とみやま こたろう、1902年(明治35年)12月28日 - 1972年(昭和47年)8月23日)は、日本の物理学者。理論物理学を専門とした東京物理学校、早稲田大学の各教授である。その著作や『科学』編集主任としての活動を通じ「現代物理学の紹介者、解説者」「富山小太郎先生を悼む」であった。.

新しい!!: 平面波と富山小太郎 · 続きを見る »

局在基底

局在基底(きょくざいきてい Local basis, Localized basis)は、ある実空間領域に局在した基底を指す。特に、原子核を中心とした領域に局在する動径関数と球面調和関数の積を原子軌道と呼ぶ。原子軌道の線形結合で波動関数を表す方法はLCAO法と呼ばれる。局在基底関数にはスレーター型、ガウス型、数値型などがある。.

新しい!!: 平面波と局在基底 · 続きを見る »

平行六面体

平行六面体(へいこうろくめんたい、parallelepiped)とは、6面の平行四辺形で構成されている立体であり、ゾーン多面体、平行多面体の一種である。.

新しい!!: 平面波と平行六面体 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 平面波と交換法則 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: 平面波と応力 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: 平面波とハミルトニアン · 続きを見る »

バンド計算

バンド計算(バンドけいさん)とは、系の電子状態を求める計算及びその手法のこと。 電子状態とは、具体的にはバンド構造、電荷密度、状態密度などのことを指す。手法には経験的なものから非経験的(第一原理的)なものまで多数存在する。バンド計算が扱う系は、主に結晶のような固体が対象であることが多いが、表面系や、液体などが計算対象となることもある。 代表的な手法としては、擬ポテンシャル+平面波基底によるもの、APW法、KKR法のような全電子手法、第一原理分子動力学法、タイトバインディング法(Tight-binding method)などがある。第一原理分子動力学手法では、電子状態と共に対象となる系の構造最適化、つまり(準)安定構造を求めることができる。 バンド計算は、元々は結晶のような周期的境界条件のある系が計算対象であったが、その後、表面系や不規則二元合金などのような非周期系に対しても計算がなされるようになっていった。表面系に関してはスラブ近似を用いて計算するのが最も標準的である。不規則二元合金のようなポテンシャルがランダムな系には、コヒーレントポテンシャル近似が用いられることが多い。また実空間法のような、境界条件に縛られない計算手法も出現している。.

新しい!!: 平面波とバンド計算 · 続きを見る »

リチャード・P・ファインマン

リチャード・フィリップス・ファインマン(Richard Phillips Feynman, 1918年5月11日 - 1988年2月15日)は、アメリカ合衆国出身の物理学者である。.

新しい!!: 平面波とリチャード・P・ファインマン · 続きを見る »

プログラム (コンピュータ)

ンピュータプログラム(英:computer programs)とは、コンピュータに対する命令(処理)を記述したものである。コンピュータが機能を実現するためには、CPUで実行するプログラムの命令が必要である。 コンピュータが、高度な処理を人間の手によらず遂行できているように見える場合でも、コンピュータは設計者の意図であるプログラムに従い、忠実に処理を行っている。実際には、外部からの割り込み、ノイズなどにより、設計者の意図しない動作をすることがある。また設計者が、外部からの割り込みの種類を網羅的に確認していない場合もある。.

新しい!!: 平面波とプログラム (コンピュータ) · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 平面波とフーリエ変換 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 平面波とフーリエ級数 · 続きを見る »

ファインマン物理学

『ファインマン物理学』(ふぁいんまんぶつりがく、The Feynman Lectures on Physics)は1963年、1964年、1965年に出版されたリチャード・P・ファインマンとロバート・B・レイトン、マシュー・サンズ(en)による3巻構成の物理学の教科書である。ファインマンが1961年から1963年にかけてカリフォルニア工科大学(California Institute of Technology, 略称: Caltech, カルテック)で学部1、2年生を対象に行った講義が基になっている。2013年からはカルテックのサイトでも無料で公開されている。日本語訳は1967年に岩波書店から刊行された。.

新しい!!: 平面波とファインマン物理学 · 続きを見る »

周期関数

数学における周期関数(しゅうきかんすう、periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、 ラジアンの間隔で値の繰り返す三角関数を挙げることができる。周期関数は振動や波動などの周期性を示す現象を記述するものとして自然科学の各分野において利用される。周期的でない任意の関数は非周期的(ひしゅうきてき、aperiodic)であるという。.

新しい!!: 平面波と周期関数 · 続きを見る »

オイラーの公式

数学、特に複素解析におけるオイラーの公式(オイラーのこうしき、Euler's formula)は、指数関数と三角関数の間に成り立つ以下の関係をいう。 ここで は指数関数、 は虚数単位、 はそれぞれ余弦関数および正弦関数である指数関数 は累乗を拡張したもので、複素数 について という関係が成り立つ。 は自然対数の底あるいはネイピア数と呼ばれる。虚数単位 は を満たす複素数である。余弦関数 および正弦関数 は三角関数の一種である。正弦関数 は、直角三角形の斜辺とその三角形の変数 に対応する角度を持つ鋭角の対辺(正弦)の長さの比を表す。余弦関数 はもう一方の鋭角(余角)の対辺と斜辺の長さの比を表す。単位円(半径の長さを 1 とする円)の中心を原点とする直交座標系をとったとき、単位円上の点を表す 座標はそれぞれ に等しい( は円の中心と円周上の点を結ぶ直線と、 軸のなす角の大きさに対応する)。文献によっては、指数関数は、(指数)から3字取って と表される。また虚数単位には でなく を用いることがある。。任意の複素数 に対して成り立つ等式であるが、特に が実数である場合が重要でありよく使われる。 が実数のとき、 は複素数 がなす複素平面上の偏角(角度 の単位はラジアン)に対応する。 公式の名前は18世紀の数学者レオンハルト・オイラー (Leonhard Euler) に因むが、最初の発見者はロジャー・コーツ (Roger Cotes) とされる。コーツは1714年に を発見したが、三角関数の周期性による対数関数の多価性を見逃した。 1740年頃オイラーはこの対数関数の形での公式から現在オイラーの公式の名で呼ばれる指数関数での形に注意を向けた。指数関数と三角関数の級数展開を比較することによる証明が得られ出版されたのは1748年のことだった。 この公式は複素解析をはじめとする純粋数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要な役割を演じる。物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 オイラーの公式は、変数 が実数である場合には、右辺は実空間上で定義される通常の三角関数で表され、虚数の指数関数の実部と虚部がそれぞれ角度 に対応する余弦関数 と正弦関数 に等しいことを表す。このとき、偏角 をパラメータとする曲線 は、複素平面上の単位円をなす。 特に、 のとき(すなわち偏角が 180 度のとき)、 となる。この関係はオイラーの等式 と呼ばれる三角関数の周期性(従って複素指数関数の周期性)により、オイラーの等式が成り立つのは に限らない。すなわち、任意の整数 について は を満たす。。 が純虚数である場合には、左辺は実空間上で定義される通常の指数関数であり、右辺は純虚数に対する三角関数となる。 オイラーの公式は、三角関数 が双曲線関数 に対応することを導く。また応用上は、オイラーの公式を経由して三角関数を複素指数関数に置き換えることで、微分方程式やフーリエ級数などの扱いを簡単にすることなどに利用される。.

新しい!!: 平面波とオイラーの公式 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 平面波とシュレーディンガー方程式 · 続きを見る »

サイエンス社

株式会社サイエンス社(サイエンスしゃ、英称:SAIENSU-SHA Co.,Ltd.)は、東京都渋谷区千駄ヶ谷にある日本の出版社である。.

新しい!!: 平面波とサイエンス社 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: 平面波と共立出版 · 続きを見る »

固有状態

量子力学において、ある物理量 の固有状態 (eigenstate) とは、その物理量(オブザーバブル)を表すエルミート演算子 \hat の固有ベクトル \ \ のことである。 よって物理量 の固有状態 \ \ は以下の固有値方程式を満たす。 一般に、量子系について物理量の測定を行った時、どんなに同じように状態を用意して同じように測定をしても、測定値は測定によってバラバラである。しかし系が\hatの固有値 a_n \ に属する固有状態 |a_n\rangle \ であるときは、物理量 \hat を観測すれば必ず a_n \ という値を得る(オブザーバブルを参照)。よって「物理量 \hat の固有状態 |a_n\rangle \ は、物理量 \hat が確定した値 a_n を持っている状態である」と解釈できる。 また \hat はエルミート演算子なので、その固有値はすべて実数である。.

新しい!!: 平面波と固有状態 · 続きを見る »

球面波

球面波(きゅうめんは、spherical wave)とは、3次元の等方的な媒質中に存在する点波源から発生、もしくは一点に向かって収束する球状の波動のことである。同位相の波面は全て点波源を中心とする同心球面を形成するため、この波動は波源に関して球対称となる。3次元波動方程式の球対称解として記述される。.

新しい!!: 平面波と球面波 · 続きを見る »

第一原理バンド計算

一原理バンド計算(だいいちげんりバンドけいさん)は、実験結果に依らないで(第一原理)計算が遂行されるバンド計算である。第一原理電子構造計算、第一原理電子状態計算、あるいは単にバンド計算とも言う。 第一原理バンド計算手法には、様々なものがある。主に、擬ポテンシャル+平面波基底によるものと、全電子による電子状態計算手法とがある。全電子手法には、LMTO法、APW法、線形化 APW 法(LAPW法)、KKR法とそのフルポテンシャル版などがある。.

新しい!!: 平面波と第一原理バンド計算 · 続きを見る »

等位集合

数学における等値集合または等位集合(とういしゅうごう、level set)は、与えられた写像が決められた値を取るような定義域に属する元全体の成す集合を言う。例えば、-変数の実数値函数 に対し、実数値 に対する等位集合は で与えられる。 二変数の場合には、等位集合は曲線を描き、等位(曲)線 (level curve), 等高線 (contour line), 等値線 (iso­line) などと呼ばれる。同様に三変数のときの等位集合は、等位(曲)面 (level surface), 等値面 (iso­surface) と言い、またさらに高次元の場合を等位超曲面 (level hyper­surface) と呼ぶことがある。.

新しい!!: 平面波と等位集合 · 続きを見る »

直交化された平面波

原子において、内殻電子の波動関数はポテンシャルの影響を強く受けるため激しく変化する。このため、波動関数は原子軌道を基底関数として記述するのが適当であるが、価電子部分はポテンシャルの影響が内殻よりずっと弱いので波動関数の変化は、格子間領域で緩やかとなる。従って価電子部分の波動関数は平面波を基底関数として記述するのが適当である。 この時、価電子部分を記述する平面波基底は、内殻電子の波動関数と直交する必要があり、直交するようにしたものを直交化された平面波(英:Orthogonalized plane wave, OPW)と言う。これを使って電子状態を求める方法を直交化された平面波による方法(OPW法)と言う。 この手法は展開すべき平面波の数を減らすことができるが、基底関数の形は複雑になるため、現在バンド計算にはあまり用いられない。.

新しい!!: 平面波と直交化された平面波 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 平面波と運動量 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 平面波と複素共役 · 続きを見る »

規格化

規格化 (normalization) ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることが規格化(正規化とも言う)である。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r.

新しい!!: 平面波と規格化 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 平面波と関数 (数学) · 続きを見る »

自乗可積分函数

自乗可積分函数(じじょうかせきぶんかんすう、square-integrable function)とは、実数値または複素数値可測函数で絶対値の自乗の積分が有限であるものである。すなわち ならば、f は実数直線 (−∞, +&infin) 上で自乗可積分である。場合によっては積分区間が のように有界区間のこともある。.

新しい!!: 平面波と自乗可積分函数 · 続きを見る »

自由粒子

自由粒子 (free particle) は束縛されていない粒子である。古典力学的には、場の影響を受けていない ("field-free") 空間に存在する粒子を意味する(粒子は外力を受けない)。そのため、自由粒子のポテンシャルエネルギーはその位置によらず一定である。.

新しい!!: 平面波と自由粒子 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 平面波と電荷 · 続きを見る »

電荷密度

電荷密度(でんかみつど、charge density)は、単位体積当たりの電荷の分布量(体積密度)。電荷を担うものとしては電子や原子核、イオンのような粒子(素粒子や正孔などを含む)であったり、仮想的に一様に分布する電荷のような場合(→参照:ジェリウムモデル)もある。 金属や半導体では、電荷密度は0と近似できる。 実験的にはX線回折実験による構造解析から得られた結果を最大エントロピー法などを使って実空間での電子の電荷分布(→電子密度に相当)が求まる。また中性子回折実験の結果から同様な手法により原子核の密度が求まる。.

新しい!!: 平面波と電荷密度 · 続きを見る »

Pulay補正

Pulay 補正(Pulay correction)はバンド計算における波動関数の補正で、以下の3つがある。.

新しい!!: 平面波とPulay補正 · 続きを見る »

格子 (数学)

数学における、特に初等幾何学および群論における、n-次元空間 Rn 内の格子(こうし、lattice)とは、実ベクトル空間 Rn を生成するような Rn の離散部分群をいう。すなわち、Rn の任意の格子は、ベクトル空間としての基底から、その整数係数線型結合の全体として得られる。ひとつの格子は、その基本領域あるいはによる正多面体空間充填 (regular tiling) と見ることもできる。 格子には多くの顕著な応用があり、純粋数学では特にリー環論、数論および群論に関係がある。応用数学でいえば、まず暗号理論において、いくつかの格子問題の計算が困難であることに起因する符号理論に関連する。また、物理科学においてもいくつかのやり方で応用があり、例えば物質科学および固体物理学では、「格子」は結晶構造の「枠組み」の同義語であり、結晶において原子や分子が隣接して占める正多面体状の三次元的な空間配列を意味する。より一般に、物理学において格子モデルが(しばしば計算物理の手法を用いて)研究される。.

新しい!!: 平面波と格子 (数学) · 続きを見る »

正弦波

正弦波(赤色)と余弦波(青色)の関数グラフ 正弦波(せいげんは、sine wave、sinusoidal wave)は、正弦関数として観測可能な周期的変化を示す波動のことである。その波形は正弦曲線(せいげんきょくせん、sine curve)もしくはシヌソイド (Sinusoid) と呼ばれ、数学、信号処理、電気工学およびその他の分野において重要な働きをする。.

新しい!!: 平面波と正弦波 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: 平面波と波動関数 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: 平面波と波動方程式 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: 平面波と波数 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: 平面波と法線ベクトル · 続きを見る »

混合基底

混合基底(こんごうきてい、mixed basis)は、2種類以上の基底を混ぜてバンド計算を行う手法。通常は、平面波基底+局在基底(ガウス基底を使う場合が多い)という形が一般的である。擬ポテンシャルが深い場合(例:炭素や、3d遷移金属など)、平面波基底だけだと大量の平面波数が必要だが、局在基底を混ぜてやれば、ポテンシャルの深い部分を局在基底で対応させることができるので、その分必要な平面波の数が減り、全体としての計算量を減らすことができる。特にガウス基底だと行列要素の計算部分が解析的に解けるのでさらに有利になる。ただし、異なる基底を混ぜるので正規直交系でなくなるのが欠点である。また、力やストレスを求めるための表式の導出が難しくなる。これはプログラムのコード化や、実際の計算も難しくさせる。.

新しい!!: 平面波と混合基底 · 続きを見る »

ここにリダイレクトされます:

平面波基底平面波近似

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »