ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ファインマン物理学

索引 ファインマン物理学

『ファインマン物理学』(ふぁいんまんぶつりがく、The Feynman Lectures on Physics)は1963年、1964年、1965年に出版されたリチャード・P・ファインマンとロバート・B・レイトン、マシュー・サンズ(en)による3巻構成の物理学の教科書である。ファインマンが1961年から1963年にかけてカリフォルニア工科大学(California Institute of Technology, 略称: Caltech, カルテック)で学部1、2年生を対象に行った講義が基になっている。2013年からはカルテックのサイトでも無料で公開されている。日本語訳は1967年に岩波書店から刊行された。.

65 関係: 力学坪井忠二境界値問題富山小太郎岩波書店一般相対性理論二重スリット実験弾性微分積分学ペーパーバックハードカバーリチャード・P・ファインマンロバート・B・レイトンローレンツブラ-ケット記法テンソルベクトルベクトル解析アメリカ合衆国アメリカ議会図書館エネルギーカリフォルニア工科大学シュレーディンガー方程式スピン角運動量光学剛体砂川重信線形結晶構造統計力学組版熱力学物理学物理光学物性物理学特殊相対性理論DTP静電気学装幀角運動量誤植量子力学英語電子電磁気学電磁波連続体力学HTML5ISBNLaTeX...MathJaxScalable Vector Graphics正誤表水素波動振動最小作用の原理戸田盛和流体力学放射教科書慣性航法装置2006年2013年2状態系 インデックスを展開 (15 もっと) »

力学

力学(りきがく、英語:mechanics)とは、物体や機械(machine)の運動、またそれらに働く力や相互作用を考察の対象とする学問分野の総称である。物理学で単に「力学」と言えば、古典力学またはニュートン力学のことを指すことがある。 自然科学・工学・技術の分野で用いられることがある言葉であるが、社会集団や個人の間の力関係のことを比喩的に「力学」と言う場合もある。.

新しい!!: ファインマン物理学と力学 · 続きを見る »

坪井忠二

坪井 忠二(つぼい ちゅうじ、1902年(明治35年)9月9日 - 1982年(昭和57年)11月19日)は、日本の地球物理学者、随筆家。東京大学名誉教授。理学博士で、寺田寅彦の弟子として知られている。.

新しい!!: ファインマン物理学と坪井忠二 · 続きを見る »

境界値問題

数学の微分方程式の分野における境界値問題(きょうかいちもんだい、Boundary value problem)とは、境界条件と呼ばれる付帯的な制限が与えられている微分方程式のことである。境界値問題の解とは、与えられた境界条件を満たすような微分方程式の解のことである。 境界値問題は、物理学のいくつかの分野によく現れる。「の決定」のような波動方程式を含む問題はしばしば境界値問題として記述される。境界値問題に関する一つの重要な理論としてスツルム=リウヴィル理論がある。その理論における境界値問題の解析には、微分作用素の固有関数の計算が含まれる。 応用上意義のあるものであるために、境界値問題は良設定問題でなければならない。これはすなわち、問題に与えられた入力に対して、その入力に連続的に依存するような解がただ一つ存在することを意味する。 偏微分方程式の分野における多くの理論的な研究は、科学的あるいは工学的な応用上実際に良設定であるような境界値問題の解決を目的としている。最も早い境界値問題の研究として、ラプラス方程式の解である調和関数の発見についてのディリクレ問題が挙げられる。その解はディリクレの原理により与えられた。.

新しい!!: ファインマン物理学と境界値問題 · 続きを見る »

富山小太郎

富山 小太郎(とみやま こたろう、1902年(明治35年)12月28日 - 1972年(昭和47年)8月23日)は、日本の物理学者。理論物理学を専門とした東京物理学校、早稲田大学の各教授である。その著作や『科学』編集主任としての活動を通じ「現代物理学の紹介者、解説者」「富山小太郎先生を悼む」であった。.

新しい!!: ファインマン物理学と富山小太郎 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: ファインマン物理学と岩波書店 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ファインマン物理学と一般相対性理論 · 続きを見る »

二重スリット実験

二重スリット実験(にじゅうスリットじっけん)は、粒子と波動の二重性を典型的に示す実験。リチャード・P・ファインマンはこれを「量子力学の精髄」と呼んだ。ヤングの実験で使われた光の代わりに1個の電子を使ったものである。 この実験は古典的な思考実験であった。実際の実験は1961年にテュービンゲン大学のクラウス・イェンソンが複数の電子で行ったのが最初であり、1回に1個の電子を用いての実験は1974年になってピエール・ジョルジョ・メルリらがミラノ大学で行った。1989年に技術の進歩を反映した追試を外村彰らが行なっている。 1982年、光子1個分以下にまで弱めたレーザー光による同様の実験が浜松ホトニクス株式会社中央研究所によって行われた 。 2002年に、この実験はの読者による投票で「最も美しい実験」に選ばれた。.

新しい!!: ファインマン物理学と二重スリット実験 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

新しい!!: ファインマン物理学と弾性 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: ファインマン物理学と微分積分学 · 続きを見る »

ペーパーバック

ペーパーバック()もしくはソフトカバー()とは、安価な紙に印刷され、ハードカバーの様に皮や布や厚紙による表紙を用いていない形態の本のことである。並製本(なみせいほん)、仮製本、ペーパーカバーともいう。.

新しい!!: ファインマン物理学とペーパーバック · 続きを見る »

ハードカバー

ハードカバー()は、硬いカバーの表紙で覆われた本のことである。上製本・本製本・厚表紙本・ハードバックと表記されることもある。 ハードカバーの表紙は、厚紙や布や皮などの材質で作られる。最近の商業的なハードカバーの書籍は、ペーパーバックの書籍と同じく、背表紙の部分を接着剤で固めた、無線綴じと言う手法を使用している。昔の書籍では、背表紙の部分を糸や針金を用いて綴じる手法である、糸かがり綴じが使用されている。本来、ハードカバーの表紙は印刷技術がない当時、羊皮紙を使用し、高価で作成が大変であった書籍を保護するために使用されたものである。その際に、表紙を装飾するために様々な装飾が芸術として発展した。 ハードカバー本は、本文のページ、表紙、裏表紙、表紙のカバーより構成される。本文のページは2枚の厚い表紙の間に綴じられており、表紙には、紙やプラスチックなどによるカバーがかけられることが多い。このように、製本の手間と表紙の材料にコストがかかるため、ハードカバーの本はペーパーバックの本より高価になる傾向がある。そのため、より高額の料金を払ってでも購入する人がいると考えられる書籍がハードカバーで出版される。例えば、著名な作家の小説やエッセイ、高級感がある方が売れる様な百科事典の様な書籍がそれに当たる。 ハードカバーで出版された書籍で良く売れたものは、しばらく後にペーパーバックで出版されることが多い。.

新しい!!: ファインマン物理学とハードカバー · 続きを見る »

リチャード・P・ファインマン

リチャード・フィリップス・ファインマン(Richard Phillips Feynman, 1918年5月11日 - 1988年2月15日)は、アメリカ合衆国出身の物理学者である。.

新しい!!: ファインマン物理学とリチャード・P・ファインマン · 続きを見る »

ロバート・B・レイトン

バート・B・レイトン(Robert B. Leighton, 1919年9月10日 - 1997年3月9日)はアメリカ合衆国の物理学者である。『ファインマン物理学』の編者であり、太陽の表面が周期約5分で振動しているのを発見した。 デトロイト生まれ。カリフォルニア工科大学で学び、博士号を得た。カリフォルニア工科大学で働き、1959年に物理学の教科書、 Principles of Modern Physics を著した。1960年代はじめのリチャード・P・ファインマンの物理学教程の講義の録音から、2年以上かけて編集した『ファインマン物理学』は1964年と1966年に出版され、世界的に評価の高い物理学の教科書となった。 全米科学アカデミーの会員であり、ジェット推進研究所の火星探査衛星マリナー4号、マリナー6号と7号のチームリーダーを務めた。マイクロメータからミリメーターの波長域を分光する望遠鏡を製作し、また太陽の表面の周期約5分の振動を発見した。これが日震学の始まりとなった。レイトンの開発した観測機器は多くの天文台で使われるようになった。1988年にジェームズ・クレイグ・ワトソン・メダルを受賞した。 息子のラルフ・レイトン(Ralph Leighton)はファインマンの一連の著作の協力者で、「Tuva or Bust!」などを書いている。 Category:アメリカ合衆国の物理学者 Category:NASAの人物 Category:カリフォルニア工科大学の教員 Category:ジェット推進研究所の人物 Category:デトロイト出身の人物 Category:1919年生 Category:1997年没.

新しい!!: ファインマン物理学とロバート・B・レイトン · 続きを見る »

ローレンツ

ーレンツあるいはロレンツは、ラテン語の姓「ラウレンティウス」(Laurentius)に由来する名前。.

新しい!!: ファインマン物理学とローレンツ · 続きを見る »

ブラ-ケット記法

ブラ-ケット記法(ブラ-ケットきほう、bra-ket notation)は量子力学における量子状態を記述するための標準的な記法である。 この名称は、2つの状態の内積が'''ブラケット'''を用いて のように表され、この左半分 をブラベクトル、右半分 をケットベクトルと呼ぶことによる。この記法はポール・ディラックが発明したため、ディラックの記法とも呼ぶ。.

新しい!!: ファインマン物理学とブラ-ケット記法 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ファインマン物理学とテンソル · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: ファインマン物理学とベクトル · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: ファインマン物理学とベクトル解析 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: ファインマン物理学とアメリカ合衆国 · 続きを見る »

アメリカ議会図書館

アメリカ議会図書館(アメリカぎかいとしょかん、Library of Congress)は、アメリカ合衆国の国立図書館。蔵書数、予算額、職員数全ての点で世界最大規模の図書館である。略称はLC。 所蔵品の点数は数千万冊の書籍や各種資料など一億点を超える。合衆国連邦政府の立法府(アメリカ合衆国議会)に属する機関であり、1800年に首都ワシントンD.C.に設立された。図書館の財源は議会から支給され、個人からの寄付や贈与も受け付ける。 日本の国立国会図書館は、戦後占領時代の1948年に、アメリカ文化使節団の勧告により、このアメリカ議会図書館をモデルとして造られた。.

新しい!!: ファインマン物理学とアメリカ議会図書館 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: ファインマン物理学とエネルギー · 続きを見る »

カリフォルニア工科大学

リフォルニア工科大学(英語: California Institute of Technology)は、米国カリフォルニア州に本部を置く私立工科大学である。1891年に設置された。Caltech(カルテック、カルテク、キャルテク)の略称でも親しまれる。 カリフォルニア大学、カリフォルニア州立大学、南カリフォルニア大学とは別組織である。 全米屈指のエリート名門校の1つとされ, アメリカではマサチューセッツ工科大学(MIT)と並び称される工学及び科学研究の専門大学である。2011年10月の英国高等教育専門誌「Times Higher Education」においてはハーバード大学を抜き、世界第1位の高等教育機関として位置付けられた。以後、2015年まで、5年連続で同誌のランキングで第1位に選ばれている。 QS World University Rankingsの2018年度向け世界ランキングでは4位、前後には3位にハーバード大学が、5位にケンブリッジ大学が名を連ねる。 学部生896人、大学院生1275人。(ノーベル賞受賞者は37名) 校訓は"The truth shall make you free"。量子電磁力学の発展に寄与し、初等物理学の教科書やエッセイでも有名なリチャード・P・ファインマンや、クォーク仮説のマレー・ゲルマン、トランジスタの発明者の一人であるウィリアム・ショックレー等が教壇に立っていたこともある。NASAの技術開発に携わるジェット推進研究所 (JPL) があることでも有名。.

新しい!!: ファインマン物理学とカリフォルニア工科大学 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: ファインマン物理学とシュレーディンガー方程式 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: ファインマン物理学とスピン角運動量 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

新しい!!: ファインマン物理学と光学 · 続きを見る »

剛体

剛体(ごうたい、)とは、力の作用の下で変形しない物体のことである。 物体を質点の集まり(質点系)と考えたとき、質点の相対位置が変化しない系として表すことができる。 剛体は物体を理想化したモデルであり、現実の物体には完全な意味での剛体は存在せず、どんな物体でも力を加えられれば少なからず変形する。 しかし、大きな力を加えなければ、多くの固体や結晶体は変形を無視することができて剛体として扱うことができる。 剛体は、変形を考えないことから、その運動のみが扱われる。剛体の運動を扱う動力学は剛体の力学()と呼ばれる。大きさを無視した質点の力学とは異なり、大きさをもつ剛体の力学は姿勢の変化(転向)が考えられる。 こまの回転運動などは剛体の力学で扱われるテーマの一つである。 なお、物体の変形を考える理論として、弾性体や塑性体の理論がある。 また、気体や液体は比較的自由に変形され、これを研究するのが流体力学である。 これらの変形を考える分野は連続体力学と呼ばれる。 剛体の動力学は、剛体の質量が重心に集中したものとしたときの並進運動に関するニュートンの運動方程式と、重心のまわりの回転に関するオイラーの運動方程式で記述できる。.

新しい!!: ファインマン物理学と剛体 · 続きを見る »

砂川重信

川 重信(すなかわ しげのぶ、1925年 - 1998年8月7日)は、日本の理論物理学者。大阪大学名誉教授。.

新しい!!: ファインマン物理学と砂川重信 · 続きを見る »

線形

線形(せんけい).

新しい!!: ファインマン物理学と線形 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

新しい!!: ファインマン物理学と結晶構造 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: ファインマン物理学と統計力学 · 続きを見る »

組版

組版(くみはん)とは、印刷の一工程であって、文字や図版などの要素を配置し、紙面を構成すること。組み付けともいう。本来は活版印刷の用語であり、文字どおり版を物理的に組むこと、活字を並べて結束糸で縛ったものを「組み版」と呼んだことに由来する。.

新しい!!: ファインマン物理学と組版 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: ファインマン物理学と熱力学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ファインマン物理学と物理学 · 続きを見る »

物理光学

物理光学(ぶつりこうがく)または波動光学(はどうこうがく)は、物理学において光学の一分野であり、干渉・回折・偏光など幾何光学による光線近似が適用できない現象を扱う。量子ノイズや光通信などコヒーレンス理論の範疇とされる現象は含まないことが多い。.

新しい!!: ファインマン物理学と物理光学 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: ファインマン物理学と物性物理学 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ファインマン物理学と特殊相対性理論 · 続きを見る »

DTP

ープンソースのDTPソフトScribus DTP(Desktop publishing、デスクトップパブリッシング)とは、日本語で卓上出版を意味し、書籍、新聞などの編集に際して行う割り付けなどの作業をパーソナルコンピュータ上で行い、プリンターで出力を行うこと。.

新しい!!: ファインマン物理学とDTP · 続きを見る »

静電気学

静電気学(せいでんきがく、または静電学、Electrostatics)は静止またはゆっくり動く電荷による現象を扱う科学の一分野である。 古典古代より、琥珀のような物質をこすると軽い粒子を引き寄せることが知られていた。英語においては、ギリシャ語で琥珀をあらわす という単語が electricity(電気)の語源となった。静電現象の原因となっているのは、電荷が互いに働かせる力である。この電荷による力はクーロンの法則によって記述される。静電的に誘起された力はやや弱いとみなされがちだが、電子と陽子間に働く静電力(水素原子を作り出している)は、同粒子間に働く重力の1040倍もの強さがある。 静電現象には数多くの事例があり、パッケージからはがしたプラスチック包装紙が手に吸い付くという身近で単純なものから、穀物サイロがひとりでに爆発するという現象まである。さらに生産中に電子部品が破損したりと害になることもあれば、一方ではコピー機の原理に用いられていたりする。静電気学には物体の表面に他の物体の表面が接することにより、電荷が蓄積されるという現象が関わっている。荷電交換は2つの表面が接触し、離れるときにはいつでも起きているものの、表面のうちの少なくともどちらか一方が高い電気抵抗をもっていなければ通常その効果には気づかない。高い抵抗をもつ表面には電荷が長時間蓄えられ、その効果が観測されるためである。蓄えられた電荷は接地へとゆっくり減少してゆくか、放電によってすぐに中性化される。例えば静電気ショックの現象は、不導体の表面と接触することにより人体に蓄えられた電荷が、金属などに触れたときに一気に放電し、中性化する現象である。.

新しい!!: ファインマン物理学と静電気学 · 続きを見る »

装幀

装幀 (そうてい、装丁)とは、一般的には本を綴じて表紙などをつける作業を指す。広義には、カバー、表紙、見返し、扉、帯、外箱のある本は外箱のデザイン、また製本材料の選択までを含めた、造本の一連の工程またはその意匠を意味する。そして、装幀を担当する専門家のことを装幀家、装丁家と呼ぶ。また、装幀と本文のデザインなどを含めた図書設計を行う専門家のことを、図書設計家と括る場合もある。.

新しい!!: ファインマン物理学と装幀 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: ファインマン物理学と角運動量 · 続きを見る »

誤植

誤植(ごしょく)とは、印刷物における文字や数字、記号などの誤りのこと。ミスプリント(ミスプリ)、タイプミスとも言う。 特に、企業名・商標・人名を始めとする固有名詞や、数字の位取りの誤植が起こると、大問題となる。 そもそもは、活版印刷、写真植字で間違った活字を植字してしまうことを指す。 近年では印刷物全般に対しても用いられているが、、印刷物以外の字の間違いは単に「誤字」と言う。。 なお、タイプミスと言った場合は、ワードプロセッサ、タイプライター、コンピュータのキーボードなどの、タイピング上の間違い(typo)を広く指し、こちらは印刷物に限らず各種テキストに用いられる。.

新しい!!: ファインマン物理学と誤植 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ファインマン物理学と量子力学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: ファインマン物理学と英語 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ファインマン物理学と電子 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: ファインマン物理学と電磁気学 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: ファインマン物理学と電磁波 · 続きを見る »

連続体力学

連続体力学 (れんぞくたいりきがく、Continuum mechanics)とは、物理的対象を連続体という空間的広がりを持った物体として理想化してその力学的挙動を解析する物理学の一分野である。連続体力学では対象である連続体を巨視的に捉え、分子構造のような内部の微視的な構造が無視できるなめらかなものであり、力を加えることで変形するものとみなす。 主な連続体として弾性体と流体がある。直観的には弾性体とは圧力を取り除くと元の状態に復帰する固体であり、流体は気体、液体、プラズマを記述するものである。 連続体力学は物体を空間上の一点に近似して扱う質点の力学とは区別され、物体の変形を許容しない剛体の力学とも区別される。剛体は、変形しにくさを表す量である弾性係数が無限大である(すなわち一切変形しない)連続体であるとみなすこともできる。 連続体の力学は材料力学、水力学、土質力学といった応用力学、およびそれらの応用分野である材料工学、化学工学、機械工学、航空宇宙工学などで用いられる。.

新しい!!: ファインマン物理学と連続体力学 · 続きを見る »

HTML5

HTML5(エイチティーエムエル・ファイブ)は、HyperText Markup Languageの5回目に当たる大幅な改定版である。 HTML5はWeb Hypertext Application Technology Working Groupによって2004年に定められたWeb Applications 1.0にWeb Forms 2.0を取り入れたものがWorld Wide Web Consortiumの専門委員会に採用され、World Wide Web Consortiumより2008年1月22日にドラフト(草案)が発表され、2014年10月28日に HTML5 が勧告され、2016年11月1日に HTML 5.1 が勧告され、2017年12月14日に HTML 5.2 が勧告された。 改訂の主要目的のひとつとして、人間にも読解可能で、尚且つ、コンピュータやデバイス(ウェブブラウザ、構文解析器など)にも矛盾せず読解されるとともに最新のマルチメディアをサポートする言語に向上することである。HTML5ではHTMLだけでなくXHTML、DOMのHTML関係の部分、ECMAScriptのAPIも追加になっている。 表記は、「HTML 5.1」のようにバージョン表記で小数点以下を含める場合はHTMLと5.1の間にスペースを入れ、「HTML5」のように小数点以下を含めない場合はHTMLと5の間にスペースを含めない表記法が採用されている。過去のバージョンについても、「HTML4」や「HTML 4.0」という表記法が使われている。Extensible Markup Languageの文法で記述する場合は、「XHTML5」と表記する。.

新しい!!: ファインマン物理学とHTML5 · 続きを見る »

ISBN

ISBN(アイエスビーエヌ、International Standard Book Number)は、世界共通で図書(書籍)を特定するための番号である。日本語に訳すと国際標準図書番号となる。開発はW・H・スミスのプロジェクトであった。 日本では、これを基に日本図書コードとして使用されている。.

新しい!!: ファインマン物理学とISBN · 続きを見る »

LaTeX

(ラテック、ラテフ)とは、レスリー・ランポートによって開発されたテキストベースの組版処理システムである。電子組版ソフトウェア TeX にマクロパッケージを組み込むことによって構築されており、単体の に比べて、より手軽に組版を行うことができるようになっている。\LaTeX と表記できない場合は“LaTeX”と表記する。 なお、 を基にアスキーが日本語処理に対応させたものとして日本語 が、さらに縦組み処理にも対応させたものとして pLaTeX がある。 専門分野にもよるが、学術機関においては標準的な論文執筆ツールとして扱われている。.

新しい!!: ファインマン物理学とLaTeX · 続きを見る »

MathJax

MathJax はMathML、LaTeX、で記述された数式をウェブブラウザ上で表示するのJavaScriptライブラリである。MathJaxはApache Licenseのもとでオープンソースソフトウェアとしてリリースされている。 先行のJavaScript数式フォーマットライブラリのの後継としてMathJaxプロジェクトは2009年に開始し、アメリカ数学会によって管理されている。プロジェクトはアメリカ数学会、、によって設立され、米国物理学協会やStack Exchange Networkのような多数のスポンサーによってサポートされている。 MathJaxはarXiv、MathSciNet、、MathOverflow、ウィキペディア、スカラーペディア、Project Euclid journals、を含むウェブサイトで利用されている。.

新しい!!: ファインマン物理学とMathJax · 続きを見る »

Scalable Vector Graphics

Scalable Vector Graphics(スケーラブル・ベクター・グラフィックス、SVG)は、XMLベースの、2次元ベクターイメージ用の画像形式の1つである。アニメーションやユーザインタラクションもサポートしている。SVGの仕様はW3Cによって開発され、オープン標準として勧告されている。.

新しい!!: ファインマン物理学とScalable Vector Graphics · 続きを見る »

正誤表

正誤表(せいごひょう)またはエラッタ(英語:errata、corrigenda)は、出版物の誤植を正すために、誤植箇所と正しい記述を列挙したものである。.

新しい!!: ファインマン物理学と正誤表 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: ファインマン物理学と水素 · 続きを見る »

波動

波動(はどう、英語:wave)とは、単に波とも呼ばれ、同じようなパターンが空間を伝播する現象のことである。 海や湖などの水面に生じる波動に関しては波を参照のこと。 量子力学では、物質(粒子)も波動的な性質を持つとされている。.

新しい!!: ファインマン物理学と波動 · 続きを見る »

振動

振動(しんどう、oscillation、vibration)とは、状態が一意に定まらず揺れ動く事象をいう。英語では、重力などによる周期が長い振動と、弾性や分子間力などによる周期の短い振動は別の語が充てられるが、日本語では周期によらず「振動」という語で呼ばれる。周期性のある振動において、単位時間あたりの振動の数を振動数(または周波数)、振動のふれ幅を振幅、振動の一単位にかかる時間を周期という。 振動は、同じ場所での物質の周期的な運動であるが、物理学においてさまざまな現象の中に現れ、基本的な概念の一つとして扱われる。物理的にもっとも単純な振動は単振動である。また、振動する系はそれぞれ固有振動(数)をもつ。振動の振幅を減少させる要因がある場合には、振動が次第に弱まる減衰振動となる。外部から一定の間隔で力を与えることなどにより振動を引き起こすことを強制振動とよぶ。強制振動の振動数がその系の固有振動数に近い場合、共振(または共鳴とも)を引き起こす。古典物理学だけでなく、電磁気学では電気回路や電場・磁場の振動を扱い、またミクロな現象を扱う現代物理学などにおいても、振動は基本的な性質である。 波動現象は、振動が時間的変化にとどまらず空間的に伝わっていく現象であり、自然現象の理解になくてはならない基礎概念へと関連している。.

新しい!!: ファインマン物理学と振動 · 続きを見る »

最小作用の原理

最小作用の原理(さいしょうさようのげんり、principle of least action)は、物理学における基礎原理の一つ。特に解析力学の形成において、その基礎付けを与えた力学の原理を指す。最小作用の原理に従って、物体の運動(時間発展)は、作用積分と呼ばれる量を最小にするような軌道に沿って実現される。 物理学における最大の指導原理の一つであり、電磁気学におけるマクスウェルの方程式や相対性理論におけるアインシュタイン方程式ですら、対応するラグランジアンとこの法則を用いて導出される。また、量子力学においても、この法則そのものは、ファインマンの経路積分の考え方によって理解できる。物体は運動において様々な運動経路(軌道)をとる事が可能であるが、作用積分が極値(鞍点値)をとる(すなわち最小作用の原理を満たす)経路が最も量子力学的な確率密度が高くなる事が知られている。.

新しい!!: ファインマン物理学と最小作用の原理 · 続きを見る »

戸田盛和

戸田盛和(とだ もりかず、1917年10月20日 – 2010年11月6日)は、日本の物理学者。 東京教育大学名誉教授。専門は統計力学、凝縮系物理学、数理物理学。特に戸田が導入した格子模型は完全可積分系の典型として有名で、「戸田格子」の名を得ている。.

新しい!!: ファインマン物理学と戸田盛和 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: ファインマン物理学と流体力学 · 続きを見る »

放射

放射(ほうしゃ,radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつての日本では、輻射(ふくしゃ)とされていたが、太平洋戦争後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。.

新しい!!: ファインマン物理学と放射 · 続きを見る »

教科書

教科書(きょうかしょ、textbook; schoolbook).

新しい!!: ファインマン物理学と教科書 · 続きを見る »

慣性航法装置

慣性航法装置(かんせいこうほうそうち、Inertial Navigation System, INS)は、潜水艦、航空機やミサイルなどに搭載される装置で、外部から電波による支援を得ることなく、搭載するセンサ(慣性計測装置、Inertial Measurement Unit, IMU、Inertial Navigation Unit; INU, Inertial Guidance Unit; IGU, Inertial Reference Unit; IRUなども使用される)のみによって自らの位置や速度を算出する。慣性誘導装置(Inertial Guidance System, IGS)、慣性基準装置(Inertial Reference System, IRS)などとも呼ばれる。.

新しい!!: ファインマン物理学と慣性航法装置 · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

新しい!!: ファインマン物理学と2006年 · 続きを見る »

2013年

この項目では、国際的な視点に基づいた2013年について記載する。.

新しい!!: ファインマン物理学と2013年 · 続きを見る »

2状態系

量子力学において、2状態系(2じょうたいけい、two-state system)とは、2つの独立な量子状態から構成される量子系である。自明ではない量子系としては最も簡単なものであるが、量子力学の特徴的な性質を備える。コインの表裏のような古典対応物と異なり、2状態系の量子状態を記述する状態ベクトルは、2つの独立な状態の重ね合わせの比率と位相差が異なる無限に多くの状態を取り得る。こうした性質は量子情報理論での量子ビットの基礎をなす。2状態系として記述される系は電子や原子核のスピン の系、光子の偏光状態、共鳴波長の光に応答する原子の2準位系、ニュートリノ振動、アンモニア分子の反転モードなどの豊富な物理現象を含む。また、核磁気共鳴やアンモニアメーザーの理論的な基礎付けを与えている。J. J. Sakurai の著書 "Modern quantum mechanics" ではノーベル賞受賞者で2状態系の解析に携わった者として、7人の名を挙げている。.

新しい!!: ファインマン物理学と2状態系 · 続きを見る »

ここにリダイレクトされます:

The Feynman Lectures on Physics

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »