ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

命題論理と存在グラフ

ショートカット: 違い類似点ジャカード類似性係数参考文献

命題論理と存在グラフの違い

命題論理 vs. 存在グラフ

命題論理(propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。. 存在グラフ(Existential graph)は、チャールズ・サンダース・パースが考案した、論理式を視覚的な図として表す記法、またはその図である。パースは1882年に初めて論理グラフについての論文を書き、1914年に死去するまでその手法の研究を続けた。.

命題論理と存在グラフ間の類似点

命題論理と存在グラフは(ユニオンペディアに)共通で9ものを持っています: 変数 (数学)一階述語論理二重否定の除去ブール代数ダフィット・ヒルベルト論理演算量化集合論様相論理

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

命題論理と変数 (数学) · 変数 (数学)と存在グラフ · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

一階述語論理と命題論理 · 一階述語論理と存在グラフ · 続きを見る »

二重否定の除去

二重否定の除去(にじゅうひていのじょきょ、Double negative elimination)は、論理学、特に命題論理における推論規則の1つである。いわゆる二重否定と等価なものを追加したり(二重否定の導入)、二重の否定作用素を削除したり(二重否定の除去)といった操作を論理式に施す。 これは、次の二つの文が等価であることに基づいている。 と 二重否定の除去を形式的に表すと次のようになる。 二重否定の導入を形式的に表すと次のようになる。 二重否定の導入(Double negative introduction)は、二重否定の除去の逆であり、命題の意味を変えずに二重否定を追加できることを意味している。 これらの規則はシークエントの記法を使うと次のようにも表せる。 これら2つの推論規則に演繹定理を適用すると、以下の2つの妥当な論理式が得られる。 これらは、次の1つの論理式にまとめることができる。 双方向の含意関係は同値関係であるため、整論理式内の任意の ¬¬A は A に置換でき、その際にその整論理式(wff)の真理値は変化しない。 二重否定の除去は古典論理では定理だが、直観論理ではそうではない。直観論理では「この場合、雨が降っていない、のではない(It's not the case that it's not raining)」という文は「雨が降っている」よりも弱いとされる。後者は雨が降っていることを証明する必要があるが、前者は単に雨が降っているとしても矛盾しないことを証明すればよい(自然言語における緩叙法形式でもこのような区別が見られる)。二重否定の導入は直観論理でも定理であり、また \neg \neg \neg A \vdash \neg A も直観主義でも成立する。 素朴集合論でも、補集合が同様の性質を持つ。集合 A と集合 (AC)C は等価である(ここで、AC は A の補集合を意味する)。.

二重否定の除去と命題論理 · 二重否定の除去と存在グラフ · 続きを見る »

ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

ブール代数と命題論理 · ブール代数と存在グラフ · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

ダフィット・ヒルベルトと命題論理 · ダフィット・ヒルベルトと存在グラフ · 続きを見る »

論理演算

論理演算(ろんりえんざん、logical operation)は、論理式において、論理演算子などで表現される論理関数(ブール関数)を評価し(正確には、関数適用を評価し)、変数(変項)さらには論理式全体の値を求める演算である。 非古典論理など他にも多くの論理の体系があるが、ここでは古典論理のうちの命題論理、特にそれを形式化したブール論理に話を絞る。従って対象がとる値は真理値の2値のみに限られる。また、その真理値の集合(真理値集合)と演算(演算子)はブール代数を構成する。 コンピュータのプロセッサやプログラミング言語で多用されるものに、ブーリアン型を対象とした通常の論理演算の他に、ワード等のビット毎に論理演算を行なう演算があり、ビット演算という。 なお、以上はモデル論的な議論であり、証明論的には、公理と推論規則に従って論理式を変形(書き換え)する演算がある(証明論#証明計算の種類)。.

命題論理と論理演算 · 存在グラフと論理演算 · 続きを見る »

量化

量化(りょうか、Quantification)とは、言語や論理学において、論理式が適用される(または満足される)議論領域の個体の「量」を指定すること。.

命題論理と量化 · 存在グラフと量化 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

命題論理と集合論 · 存在グラフと集合論 · 続きを見る »

様相論理

様相論理(ようそうろんり、modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができるが、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子 \Box と、「~は可能である」ことを意味する可能性演算子 \Diamond のふたつの演算子が追加される。.

命題論理と様相論理 · 存在グラフと様相論理 · 続きを見る »

上記のリストは以下の質問に答えます

命題論理と存在グラフの間の比較

存在グラフが38を有している命題論理は、59の関係を有しています。 彼らは一般的な9で持っているように、ジャカード指数は9.28%です = 9 / (59 + 38)。

参考文献

この記事では、命題論理と存在グラフとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »