ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

力学系

索引 力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

54 関係: 反復合成写像可積分系多様体変数定義実数工学差分法不動点平衡位相空間位相空間 (物理学)作用微分方程式保存系リミットサイクルリアプノフ安定ローレンツ方程式ロトカ・ヴォルテラの方程式ロジスティック写像ヘテロクリニック軌道ファン・デル・ポール振動子ニュートン力学ホモクリニック軌道ベクトルベクトル場分岐 (力学系)アンリ・ポアンカレアトラクターエノン写像エルゴード理論カオス理論システムタプル個体群動態論状態系 (自然科学)線形力学系統計力学非線形振動子複雑系調和振動子関数 (数学)自励系自由振動自然科学英語集合構造安定散逸構造...数理モデル曲線時計反応時間 インデックスを展開 (4 もっと) »

反復合成写像

数学における写像の反復適用および反復合成(はんぷくごうせい、iteration)は、同じ写像を繰り返し適用すること(繰り返してもよい)、および同じ写像同士で合成を繰り返すことをいう。またそうして得られた写像は、もとの写像の反復合成写像 (iterated function) あるいは合成冪 (power) と呼ぶ。適当な対象を初期値として、それに反復合成写像を適用して得られる値の列は、初期値の軌道 (orbit) と言う。 反復合成は計算機科学、フラクタル、力学系など、あるいは数学および繰り込み群の物理学において研究の対象となる。.

新しい!!: 力学系と反復合成写像 · 続きを見る »

可積分系

数学や物理学では、可積分系 と名付けられた様々な考え方が知られている。 微分可能な系の一般論では、フロベニウス可積分性 が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 や完全可積分性 という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。.

新しい!!: 力学系と可積分系 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 力学系と多様体 · 続きを見る »

変数

変数(variable).

新しい!!: 力学系と変数 · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 力学系と定義 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 力学系と実数 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: 力学系と工学 · 続きを見る »

差分法

数値解析における有限差分法(ゆうげんさぶんほう、finite-difference methods; FDM)あるいは単に差分法は、微分方程式を解くために微分を有限差分近似(差分商)で置き換えて得られる差分方程式<!-- ループリンク -->で近似するという離散化手法を用いる数値解法である。18世紀にオイラーが考案したと言われる。 今日ではFDMは偏微分方程式の数値解法として支配的な手法である.

新しい!!: 力学系と差分法 · 続きを見る »

不動点

不動点を三つ持つ関数 数学において写像の不動点(ふどうてん)あるいは固定点(こていてん、fixed point, fixpoint)とは、その写像によって自分自身に写される点のことである。.

新しい!!: 力学系と不動点 · 続きを見る »

平衡

平衡(へいこう、balance, equilibration, equilibrium)は、物が釣り合って安定していること、あるいはその釣り合い。平衡させることを英語で といい、そのときの状況が である。 および は「平衡」の他に「均衡」とも訳される。平衡と似た概念として詳細釣り合いがある。.

新しい!!: 力学系と平衡 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 力学系と位相空間 · 続きを見る »

位相空間 (物理学)

物理学における位相空間(いそうくうかん、phase space)とは、力学系の位置と運動量を座標(直交軸)とする空間のことである。数学における位相空間()と区別するために、相空間と呼ぶ流儀もある。 ハミルトン形式においては位置と運動量が力学変数となり、力学変数の関数として表される物理量は位相空間上の関数となる。 1個の質点の運動の状態は、その位置と運動量を指定することで定まる。-次元空間における運動では、位置と運動量がそれぞれ 成分あり、合わせて 成分となる。これらを座標とする 次元の空間が位相空間である。1個の質点の運動の状態は位相空間上の1個の点として表現され、これは状態点と呼ばれる。運動方程式に従って位置と運動量は時間変化し、時間の経過とともに状態点は1本の軌跡を描く。 -次元空間を運動する 個の質点系の運動の状態は 次元位相空間上の 個の状態点の分布として表現され、時間とともにその分布が変化する。 質点系は上記の分布による表現だけではなく、 個の質点の各々の位置と運動量のすべてを座標とする -次元の位相空間を考えることができる。質点系の運動の状態はこの -次元空間上の1個の状態点として表現され、時間の経過とともに1本の軌跡を描く。.

新しい!!: 力学系と位相空間 (物理学) · 続きを見る »

作用

作用(さよう)は、一般にはある物が他の物に及ぼす何らかの影響・効果のこと。物理学や数学で用いられる。分野によって、いくつかの異なる意味で用いられている。.

新しい!!: 力学系と作用 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 力学系と微分方程式 · 続きを見る »

保存系

力学系が保存系であるとは、保存量(または、第一積分)が存在することを意味している。.

新しい!!: 力学系と保存系 · 続きを見る »

リミットサイクル

リミットサイクル(英語:limit cycle)とは、力学系における相空間上での閉軌道であり、時間 を無限大、またはマイナス無限大にしたとき、その閉軌道に収束する軌道が少なくとも一つ存在するものである。極限閉軌道や極限周期軌道とも呼ばれる。1881年、力学系の始祖でもあるアンリ・ポアンカレによって初めて見いだされた。 リミットサイクルは非線形系でのみ現れる。リミットサイクルの十分近くの軌道がすべてリミットサイクルに収束するとき、漸近安定である、または単に安定であるという。 安定なリミットサイクルは、閉軌道に小さな摂動が加わっても元に戻る。物理的には、リミットサイクルは自励振動の数理モデルとなる。また、相空間上の様々な初期値から出発した軌道はリミットサイクル軌道に収束し、やはり自励振動を示す。リミットサイクルを持つ例として、ファン・デル・ポール振動子がある。代数的微分方程式におけるリミットサイクル軌道の数を求める問題は、ヒルベルトの第16問題の第二の問題として知られる。2次元相空間の場合は、ポアンカレ・ベンディクソンの定理などによってリミットサイクルの存在(または非存在)を予見できる。.

新しい!!: 力学系とリミットサイクル · 続きを見る »

リアプノフ安定

力学系の平衡点の近傍から出発する軌道が平衡点の近くに留まり続けるとき、その平衡点はリアプノフ安定(リアプノフあんてい、Lyapunov stable)であるという。.

新しい!!: 力学系とリアプノフ安定 · 続きを見る »

ローレンツ方程式

ーレンツ方程式 (ローレンツほうていしき)は、カオス的ふるまいを示す非線型方程式の一つである。次に式を示す。 x, y, zの3つの変数についての方程式で、システムのふるまいは、3つの定数p, r, bにより決まる。 大気変動モデルを研究していたマサチューセッツ工科大学の気象学者、エドワード・N・ローレンツ (Edward N. Lorenz) が、論文「決定論的非周期な流れ( Deterministic Nonperiodic Flow)」 (1963) の中で提示した。図では、この論文でローレンツが与えた p.

新しい!!: 力学系とローレンツ方程式 · 続きを見る »

ロトカ・ヴォルテラの方程式

トカ・ヴォルテラの方程式(ロトカ・ヴォルテラのほうていしき、英語:Lotka-Volterra equations)とは、生物の捕食-被食関係による個体数の変動を表現する数理モデルの一種。2種の個体群が存在し、片方が捕食者、もう片方が被食者のとき、それぞれの個体数増殖速度を二元連立非線形常微分方程式系で表現する。ロトカ・ヴォルテラの捕食式やロトカ・ヴォルテラ捕食系、ロトカ-ヴォルテラの捕食者-被食者モデルなどとも呼ばれる。 具体的には以下の方程式で表される。 \frac &.

新しい!!: 力学系とロトカ・ヴォルテラの方程式 · 続きを見る »

ロジスティック写像

ティック写像(ロジスティックしゃぞう、)とは、1次元の離散力学系の一種。ロジスティック方程式の離散化からも得られるため離散型ロジスティック方程式とも呼ばれる。変数を x としたとき、次の1変数2次差分方程式(漸化式)で示される。 ロジスティック写像は、パラメータ a にどのような値を与えるかによって、n を増やすに連れたxnの値の変化(振る舞いや軌道と呼ぶ)が、一定値への収束、複数の値を繰り返し取り続ける周期的な振動、カオスと呼ばれる非周期的な極めて複雑な振る舞い、へと変化する。 この複雑な振る舞いについて多くの研究がされてきたが、特にロバート・メイ(他にジム・ヨーク、ジョージ・オスター)の研究によって広く知られるようになった。 カオスを生み出す系は非線形性を持つ必要があるが、このような非線形関数の中でも、ロジスティック写像は最も単純なものの1つである二次関数の差分方程式からカオスを生成する。この単純さと、他のカオスとも共通する現象がいくつも現れることから、カオス理論の入り口としてよく採り上げられる。.

新しい!!: 力学系とロジスティック写像 · 続きを見る »

ヘテロクリニック軌道

力学系において、ヘテロクリニック軌道とは、二つの不動点をつなぐ解軌道である。 同じ不動点の場合は、ホモクリニック軌道である。.

新しい!!: 力学系とヘテロクリニック軌道 · 続きを見る »

ファン・デル・ポール振動子

ファン・デル・ポール振動子とは、非線形の減衰を受けた非保存系の振動子である。支配方程式は、ファン・デル・ポール方程式と呼ばれる次の式である。 x は座標で、時間 t の関数となっている。&mu;は非線形の減衰の強さを表すパラメーターである。 リエナールの定理から、リミットサイクルの存在を示すことができる。.

新しい!!: 力学系とファン・デル・ポール振動子 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 力学系とニュートン力学 · 続きを見る »

ホモクリニック軌道

数学において、ホモクリニック軌道(homoclinic orbit)とは、力学系における流れの軌跡で、鞍点(saddle point)から出て、同じ鞍点に戻ってくる軌道である。 より厳密に、鞍点での安定多様体と不安定多様体の積集合とも定義できる。 反復写像系(離散力学系)でも、ホモクリニック軌道や、ホモクリニックポイントは同様に、 安定多様体と不安定多様体の不動点と周期点を用いて定義することができる。.

新しい!!: 力学系とホモクリニック軌道 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 力学系とベクトル · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 力学系とベクトル場 · 続きを見る »

分岐 (力学系)

分岐(bifurcation)は、力学系においてパラメータの小さな変化により、系の質的または位相(topology)的な変化を意味する。分岐は微分方程式で表現される連続的な時間や、反復写像によりあらわされる離散的時間で起こる。 分岐の例として、ロジスティック写像がある。ロジスティック写像は、最初に一本の線からスタートし、パラメータを変化させていくと、ある点で二本に分岐し、さらにそれらがまた分岐し…を繰り返すことにより、カオス的振る舞いを見せる。.

新しい!!: 力学系と分岐 (力学系) · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 &ndash; 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: 力学系とアンリ・ポアンカレ · 続きを見る »

アトラクター

トレンジアトラクターを可視化した例 アトラクター(英: attractor)は、ある力学系がそこに向かって時間発展をする集合のことである。 その力学系において、アトラクターに十分近い点から運動するとき、そのアトラクターに十分近いままであり続ける。アトラクターの形状は点や曲線、多様体、さらにフラクタル構造を持った複雑な集合であるストレンジアトラクターなどをとりうる。 カオスな力学系に対してアトラクターを描写することは、現在においてもカオス理論における一つの研究課題である。 アトラクターに含まれる軌道は、そのアトラクターの内部にとどまり続けること以外に制限はなく、周期的であったり、カオス的であったりする。.

新しい!!: 力学系とアトラクター · 続きを見る »

エノン写像

ノン写像(エノンしゃぞう、Hénon map)とは、2次元の離散力学系の一種。次の2変数連立常差分方程式(漸化式)で示される。 ここで、a、bは定数で、単にパラメータなどと呼ぶ。 エノン写像は、1976年にフランスの天文学者ミシェル・エノン(:fr:Michel Hénon)により発表された。エノンは、1963年に発表されたローレンツ方程式が生み出すカオスをさらに研究するため、ローレンツの系の本質的性質を同様に持ちつつも、より簡単な数学モデルを構築することを目的に上記の写像を考案した。 また、1969年にエノンが発表した以下の形式の写像についても、もう一つのエノン写像として紹介される場合もある。.

新しい!!: 力学系とエノン写像 · 続きを見る »

エルゴード理論

ルゴード理論(エルゴードりろん、英語:ergodic theory)は、ある力学系がエルゴード的(ある物理量に対して、長時間平均とある不変測度による位相平均が等しい)であることを示す、すなわちエルゴード仮説の立証を目的とする理論。この仮説は、SinaiらのDynamical billiardsの例などで正しいという証明が与えられているが、統計力学の基礎とは無関係である。また、物理学でのエルゴード性を抽象化した、数学における保測変換の理論をそう呼ぶこともある。;長時間平均;位相平均 上記2つの平均が同じような値(あるいは関数)を得られるものについて、エルゴード的ということが出来る。.

新しい!!: 力学系とエルゴード理論 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: 力学系とカオス理論 · 続きを見る »

システム

テム(system)は、相互に影響を及ぼしあう要素から構成される、まとまりや仕組みの全体。一般性の高い概念であるため、文脈に応じて系、体系、制度、方式、機構、組織といった多種の言葉に該当する。系 (自然科学) の記事も参照。 それ自身がシステムでありながら同時に他のシステムの一部でもあるようなものをサブシステムという。.

新しい!!: 力学系とシステム · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: 力学系とタプル · 続きを見る »

個体群動態論

個体群動態論 (こたいぐんどうたいろん、Population dynamics) は、生物の個体群の大きさ(個体数や生物量、密度)の時間的・空間的変動の様子を研究する分野。個体群動態学とも呼ばれる。個体群生態学における一分科であり、なおかつ個体群生態学の主要部分でもある。 個体群動態論の最も簡単な数理モデルの一つにモデルがある。指数関数的増加モデルを用いることで、既に存在する個体群に対し、任意の与えられた個体群に関する変動率を求めることが可能となる。.

新しい!!: 力学系と個体群動態論 · 続きを見る »

状態

態(じょうたい、)は、 ある事物・対象の、時間とともに変化しうる性質・ありさま等を指す言葉である。 分野によってさまざまな意味で使われる。.

新しい!!: 力学系と状態 · 続きを見る »

系 (自然科学)

自然科学における系(けい、)とは、宇宙(世界、ユニバース、)の一部のうち、考察の対象として注目している部分である。分野や考察の内容に応じて力学系、生態系、太陽系、実験系などというように用いられる。システムの記事も参照。 宇宙のうち、系ではない考察の対象としない部分はという。これは外界が系に比べて非常に大きく、外界が系に影響を及ぼして系の状態の変化を引き起こすことがあっても、系が外界に及ぼす影響は無視できるとする仮定の下に考察の対象から外される。外界の状態は、常に一定であるとしたり、単純な変化をしたりと、考察の前提として仮定される。また、観測者は外界にいるものとして通常は考察の対象とされない。 物理学では、系を古典論で記述するとき、その系を古典系と呼ぶ。一方で系を量子論で記述するとき、その系を量子系とよぶ。.

新しい!!: 力学系と系 (自然科学) · 続きを見る »

線形力学系

線形力学系(せんけいりきがくけい、linear dynamical system)とは、行列で定義され、線形性を持つ力学系である。.

新しい!!: 力学系と線形力学系 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 力学系と統計力学 · 続きを見る »

非線形振動子

非線形振動子(ひせんけいしんどうし)は、初期値に比例しない振動を発生するものである。一般に微分方程式の形で表現されている。また初期値に比例する振動子(調和振動子など)は線形振動子と呼ぶ。.

新しい!!: 力学系と非線形振動子 · 続きを見る »

複雑系

複雑系(ふくざつけい、complex system)とは、相互に関連する複数の要因が合わさって全体としてなんらかの性質(あるいはそういった性質から導かれる振る舞い)を見せる系であって、しかしその全体としての挙動は個々の要因や部分からは明らかでないようなものをいう。 これらは狭い範囲かつ短期の予測は経験的要素から不可能ではないが、その予測の裏付けをより基本的な法則に還元して理解する(還元主義)のは困難である。系の持つ複雑性には非組織的複雑性と組織的複雑性の二つの種類がある。これらの区別は本質的に、要因の多さに起因するものを「組織化されていない」(disorganized) といい、対象とする系が(場合によってはきわめて限定的な要因しか持たないかもしれないが)創発性を示すことを「組織化された」(organized) と言っているものである。 複雑系は決して珍しいシステムというわけではなく、実際に人間にとって興味深く有用な多くの系が複雑系である。系の複雑性を研究するモデルとしての複雑系には、蟻の巣、人間経済・社会、気象現象、神経系、細胞、人間を含む生物などや現代的なエネルギーインフラや通信インフラなどが挙げられる。 複雑系は自然科学、数学、社会科学などの多岐にわたる分野で研究されている。また、複雑系科学の記事も参照のこと。.

新しい!!: 力学系と複雑系 · 続きを見る »

調和振動子

調和振動子(ちょうわしんどうし、harmonic oscillator)とは、質点が定点からの距離に比例する引力を受けて運動する系である。調和振動子は定点を中心として振動する系であり、その運動は解析的に解くことができる。.

新しい!!: 力学系と調和振動子 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 力学系と関数 (数学) · 続きを見る »

自励系

数学において、自励系(じれいけい)とは、微分方程式系で の形で表すことができる系である。ここで x はベクトル、t は時間を表すことが一般的である。このとき、自励系は時間に依存しない、定常的な系をあらわす。 自励系ではそれぞれの解軌道が交わらない。例としては、線形力学系がある。.

新しい!!: 力学系と自励系 · 続きを見る »

自由振動

自由振動(じゆうしんどう、free oscillation、free vibration)とは、ある系がその固有振動数で振動することである。減衰のない自由振動では強制振動とは異なり、系に外部から力が作用しなくても運動しつづける。.

新しい!!: 力学系と自由振動 · 続きを見る »

自然科学

自然科学(しぜんかがく、英語:natural science)とは、.

新しい!!: 力学系と自然科学 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 力学系と英語 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 力学系と集合 · 続きを見る »

構造安定

構造安定(こうぞうあんてい)とは、力学系において、力学系が小さな摂動で解の挙動が質的には変化しないことを表す概念である。.

新しい!!: 力学系と構造安定 · 続きを見る »

散逸構造

散逸構造(さんいつこうぞう、dissipative structure)とは、熱力学的に平衡でない状態にある開放系構造を指す。すなわち、エネルギーが散逸していく流れの中に自己組織化のもと発生する、定常的な構造である。イリヤ・プリゴジンが提唱し、ノーベル賞を受賞した。定常開放系、非平衡開放系とも言う。 散逸構造は、岩石のようにそれ自体で安定した自らの構造を保っているような構造とは異なり、例えば潮という運動エネルギーが流れ込むことによって生じる内海の渦潮のように、一定の入力のあるときにだけその構造が維持され続けるようなものを指す。 味噌汁が冷えていくときや、太陽の表面で起こっているベナール対流の中に生成される自己組織化されたパターンを持ったベナール・セルの模様なども、散逸構造の一例である。またプラズマの中に自然に生まれる構造や、宇宙の大規模構造に見られる超空洞が連鎖したパンケーキ状の空洞のパターンも、散逸構造生成の結果である。 散逸構造系は開放系であるため、エントロピーは一定範囲に保たれ、系の内部と外部の間でエネルギーのやり取りもある。生命現象は定常開放系としてシステムが理解可能であり、注目されている。 従来の熱力学は主に平衡熱力学を扱うものが中心であったが、定常熱力学が新たに注目を集めている。.

新しい!!: 力学系と散逸構造 · 続きを見る »

数理モデル

数理モデル(すうりモデル、mathematical model)とは、通常は、時間変化する現象の計測可能な主要な指標の動きを模倣する、微分方程式などの「数学の言葉で記述した系」のことを言う。モデルは「模型」と訳され「数理模型」と呼ばれることもある。元の現象を表現される複雑な現実とすれば、モデル(模型)はそれの特別な一面を簡略化した形で表現した「言語」(いまの場合は数学)で、より人間に理解しやすいものとして構築される。構築されたモデルが、元の現象を適切に記述しているか否かは、数学の外の問題で、原理的には論理的には真偽は判定不可能である。人間の直観によって判定するしかない。どこまで精緻にモデル化を行ったとしても、得た観察を近似する論理的な説明に過ぎない。 数理モデルは、対象とする現象や、定式化の抽象度などによって様々なものがある。.

新しい!!: 力学系と数理モデル · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 力学系と曲線 · 続きを見る »

時計反応

時計反応とは化合物が混合して、化合物の濃度が周期的に変化したり、一定の誘導時間が経過した後に突然物質の性質が変化したりする化学反応である。非平衡熱力学(英語版)が成り立つ実例として示され、非線形振動の立証につながった。 反応物に有色の物がある場合、濃度が急激に上昇して変化が始まり、その後時間の経過とともに周期的に色が変化する。時計反応の例として、ベロウソフ・ジャボチンスキー反応、ブリッグス・ラウシャー反応、ブレイ・リーブハウスキー反応やヨウ素時計反応などがあげられる。.

新しい!!: 力学系と時計反応 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 力学系と時間 · 続きを見る »

ここにリダイレクトされます:

動的システム

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »