ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

トーラス

索引 トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

51 関係: 基本群埋め込み (数学)同値合同多様体媒介変数宇宙対角行列中身の詰まったトーラス一般線型群平坦平面平行四辺形代数学位相同型位相幾何学地球ハール測度トーラス結び目フーリエ変換ドラゴンクエストシリーズドーナツ初等幾何学アニュラスコンパクト空間コンパクト群コンピュータRPGコーヒーカップ円 (数学)円周円柱 (数学)回転回転体回転面球面種数積位相立体結び目理論直積集合複素平面複素数軸 (機械要素)長方形連結和GIFアニメーション楕円函数正方形曲率曲線...4次元 インデックスを展開 (1 もっと) »

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: トーラスと基本群 · 続きを見る »

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: トーラスと埋め込み (数学) · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: トーラスと同値 · 続きを見る »

合同

合同(ごうどう).

新しい!!: トーラスと合同 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: トーラスと多様体 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: トーラスと媒介変数 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: トーラスと宇宙 · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: トーラスと対角行列 · 続きを見る »

中身の詰まったトーラス

初等幾何学における中身の詰まったトーラス(なかみのつまったトーラス、solid torus; ソリッドトーラス、トーラス体)は、一つの円周に沿って円板が掃く領域として定まる回転体である。位相的には、一つのハンドル体のみを持つ(すなわち種数 の)コンパクト図形である。 中身の詰まったトーラスを図示するには三次元空間に埋め込まれた(トロイド)として描くのが標準的な方法であるが、図示の仕方によっては互いに区別すべきトーラスと同様の見た目になることがある。トーラスとはトーラス形の表面(境界面)を成す二次元の図形のことであり、トーラスに囲まれる有界領域はソリッドトーラスの一種となる。.

新しい!!: トーラスと中身の詰まったトーラス · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: トーラスと一般線型群 · 続きを見る »

平坦

平坦.

新しい!!: トーラスと平坦 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: トーラスと平面 · 続きを見る »

平行四辺形

平行四辺形(へいこうしへんけい、英: parallelogram)とは、2組の対辺がそれぞれ平行である四角形のことである。 平行四辺形は、台形の一種である。また、特殊な平行四辺形に長方形,菱形がある。.

新しい!!: トーラスと平行四辺形 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: トーラスと代数学 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: トーラスと位相同型 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: トーラスと位相幾何学 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: トーラスと地球 · 続きを見る »

ハール測度

解析学におけるハール測度(ハールそくど、Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者にその名を因む。.

新しい!!: トーラスとハール測度 · 続きを見る »

トーラス結び目

(3,7)型トーラス結び目の立体的な図。 トーラス結び目(トーラスむすびめ、Torus knot)または輪環結び目(りんかんむすびめ)とは、位相幾何学の一分野である結び目理論において、トーラス面上にぴったりと貼り付けられるような結び目のこと。絡み目の場合はトーラス絡み目(トーラスからみめ、Torus link)という。.

新しい!!: トーラスとトーラス結び目 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: トーラスとフーリエ変換 · 続きを見る »

ドラゴンクエストシリーズ

ドラゴンクエストシリーズ(Dragon Quest Series)は、1986年5月27日に発売された『ドラゴンクエスト』を第一作とする、日本製コンピュータRPGのシリーズ作品。主にゲームデザイナーの堀井雄二を中心として製作され、スクウェア・エニックス(旧エニックス)が発売している。 2017年時点で、シリーズ累計出荷数と配信数は7,500万本を超えた。.

新しい!!: トーラスとドラゴンクエストシリーズ · 続きを見る »

ドーナツ

典型的なリングドーナツ ティムビッツ(ドーナツホールズ) マラサダ チュロス ドーナツ(doughnut、donut)は、小麦粉が主成分の生地に水・砂糖・バター・卵などを加えたものであり、一般的には、油脂で揚げた甘い菓子である。内側はしっとりふんわりしたケーキのような食感のものや、モチモチした食感のものなどがあり、形状はリング状が多く、ボール状のものなどもある。 ドーナッツとも言う。戦間期には敵性語の言い換えにより「砂糖天麩羅」とも呼ばれた。 日本では下に記した専門店や、スーパーマーケット、コンビニエンスストアで販売されているが、ホットケーキミックスなどを用いると家庭でも比較的簡単に作ることができ、ドーナツ専用の「ドーナツミックス」も市販されている。日本では菓子の範疇であるが、アメリカ合衆国では朝食代わりにする人も多い。 サーターアンダーギーやベルリーナー・プファンクーヘンなど、今日ドーナツの範疇に含まれる菓子の多くは祭日や祝い事と関連が深く、油脂や砂糖が貴重品だった頃は庶民が日常的に口にできるものではなかった。調理に油脂を多く用いることから、キリスト教(カトリック)圏では伝統的に四旬節の節制が始まる前に行われる謝肉祭、ユダヤ教圏では聖油の祭日ハヌカーとの関連が深い。.

新しい!!: トーラスとドーナツ · 続きを見る »

初等幾何学

初等幾何学(しょとうきかがく、elementary geometry矢野健太郎編、東京理科大学数学教育研究所第2版 編集『』、共立出版、2010年、「初等幾何学」より。ISBN 978-4-320-01931-7)は、二次元(点や直線や円など)・三次元(錘体や球など)の図形をユークリッド幾何学的に扱う数学、幾何学の分野である。.

新しい!!: トーラスと初等幾何学 · 続きを見る »

アニュラス

数学において、アニュラス(annulus, ラテン語で「小さい環」を意味する)あるいは円環とは、輪の形をした対象、特に 2 つの同心円によって囲まれた領域である。 開アニュラスは円柱側面(円筒) や に同相である。 アニュラスの面積は半径 の大きい円の面積から半径 の小さい円の面積を引いたものである: アニュラスの面積はアニュラスの中に完全に置ける最長の線分の長さ(添付図の )として得られる。これはピタゴラスの定理によって証明できる。アニュラスの中に完全に置ける最長の線分は小さい円に接し、その点における半径と直角をなす。したがって と は斜辺 の直角三角形の残りの辺の長さであり、面積は次で与えられる: 面積は微分積分学によっても計算できる。アニュラスを幅 、面積 の無限個の無限小アニュラスに分割し、 から まで積分する: ラジアンに対する "扇形"(円環扇形)の面積は.

新しい!!: トーラスとアニュラス · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: トーラスとコンパクト空間 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: トーラスとコンパクト群 · 続きを見る »

コンピュータRPG

ンピュータRPG(コンピュータ・アールピージー)は、コンピュータゲームのジャンルの一つ。 元々、RPGは卓上で紙と鉛筆、サイコロ用いて行うものであり、それが計算機の発展とともにコンピューター上で展開されるようになったものであるが、それらの先駆段階を省いてRPG文化が輸入された日本では、初期からCRPGが席巻したため、「RPG」(アールピージー)がそのままCRPGを指すこと多い(本来のRPGはTRPG.

新しい!!: トーラスとコンピュータRPG · 続きを見る »

コーヒーカップ

ーヒーカップ(coffee cup)とは、コーヒーを飲む時に用いられる茶碗のこと広辞苑第六版「コーヒーカップ」。「コーヒー碗」あるいは「コーヒー茶碗」ともいう。.

新しい!!: トーラスとコーヒーカップ · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

新しい!!: トーラスと円 (数学) · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: トーラスと円周 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: トーラスと円柱 (数学) · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: トーラスと回転 · 続きを見る »

回転体

数学、工学および製造業における回転体(かいてんたい、solid of revolution)は、適当な平面曲線を同平面内の直線をとして回転させることにより得られる立体図形である。 母線となる曲線が軸と交わらないものとすれば、回転体の体積は表面積とによって記述される円周の長さとの積に等しい(パップスの第二中心軌跡定理)。 代表円板 (representative disk) は回転体の三次元体素を言う。この体素は回転の軸から 単位離れた位置にある長さ の線素を回転させることによって得られ、従って 単位の円筒体積を囲む。.

新しい!!: トーラスと回転体 · 続きを見る »

回転面

ユークリッド空間における回転面あるいは回転曲面(かいてんきょくめん、surface of revolution)は、空間内の直線を軸 (axis) に、空間内の曲線を回転させて得られる曲面を言う。この曲線は回転曲面を生成する母曲線あるいは母線 (generatrix) と呼ぶ。 直線を母線として生成される回転面の例として、円柱面および円錐面が、母線が軸に平行か否かに従って得られる(も参照)。円をその任意の直径の周りで回転することにより、もとの円を大円とする球面が生成される。円をその中心を通らない軸の周りで回転させればトーラスを得る(自己交叉を持たないならば輪環面 (ring torus) になる)。.

新しい!!: トーラスと回転面 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: トーラスと球面 · 続きを見る »

種数

数(しゅすう、genus; ジーナス)は、数学用語で、分野によって似通っているがいくらか異なる意味を持つ。なお、genus の複数形は genera。.

新しい!!: トーラスと種数 · 続きを見る »

積位相

位相幾何学とその周辺において、積空間(せきくうかん、product space)とは位相空間の族の直積に積位相 (product topology) と呼ばれるを入れた空間のことである。この位相は他の、もしかするとより明らかな、と呼ばれる位相とは異なる。箱位相も積空間に与えることができ、有限個の空間の直積では積位相と一致する。しかしながら、積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが積位相が「自然」であるという意味である。.

新しい!!: トーラスと積位相 · 続きを見る »

立体

結ばれたトーラス体 幾何学における立体(りったい、body)あるいは中身のつまった図形 (solid figure) は、その表面となる曲面を記述することによって与えられる三次元の図形である。立体の表面は平坦または曲がった面の小片を繋ぎ合わせてかたち作ることができる。その表面をかたち作る小片が全て平面であるような立体は多面体という。様々な立体に対して、それらの体積や表面積を計算するための公式が存在する(参照)。より高い次元の図形についても一般にこのような仕方で「立体」を定式化するのは容易であるから、ここで述べた立体のことを特に三次元立体とよぶこともある。.

新しい!!: トーラスと立体 · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: トーラスと結び目理論 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: トーラスと直積集合 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: トーラスと複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: トーラスと複素数 · 続きを見る »

軸 (機械要素)

新幹線0系電車の車輪・車軸 軸(じく,axis)は回転によって動力を伝える機械要素である。動力の中心要素であるため比喩に使われることがある(→枢軸国など)。.

新しい!!: トーラスと軸 (機械要素) · 続きを見る »

長方形

長方形 長方形(ちょうほうけい、rectangle)とは.

新しい!!: トーラスと長方形 · 続きを見る »

連結和

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。 このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。.

新しい!!: トーラスと連結和 · 続きを見る »

GIFアニメーション

GIFアニメーション(ジフアニメーション、GIF animation)は、Graphics Interchange Format (GIF) の「マルチイメージ」を使ったアニメーション。アニメーションGIF (animated GIF) ともいう。 マルチイメージは GIF87a で導入された機能で、複数のフレームを順に表示できる。GIF89a では待ち時間が指定できるようになった。 GIF の使用は色数の制約や過去のサブマリン特許問題などから減りつつあるが、主要な代替規格である アニメーションPNG (Animated Portable Network Graphics, APNG) はウェブブラウザの対応がまだ途上であり、JPEG にはアニメーション機能そのものがないため、多くの環境で対応しているGIFアニメーションは、2010年現在でも広く使われている。.

新しい!!: トーラスとGIFアニメーション · 続きを見る »

楕円函数

数学の一分野、複素解析における楕円函数(だえんかんすう、elliptic function)は、二方向に周期を持つ有理型のことをいう。歴史的には、楕円函数は楕円積分の逆函数として、ニールス・アーベルによって発見された(楕円積分は楕円の周長を求める問題に関連して研究されていたものである)。.

新しい!!: トーラスと楕円函数 · 続きを見る »

正方形

正方形(せいほうけい、英: square)または正四角形は、平面上の幾何学において、4つの辺の長さが全て等しく、4つの角の角度が全て等しい四角形のことであり、正多角形の1種である。正方形は、長方形、菱形、凧形、平行四辺形、台形の特殊な形だと考えることもできる。なお1m2の面積は、一辺1mの正方形の面積と定義される。1cm2、1km2なども同様である。.

新しい!!: トーラスと正方形 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: トーラスと曲率 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: トーラスと曲線 · 続きを見る »

4次元

4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。.

新しい!!: トーラスと4次元 · 続きを見る »

ここにリダイレクトされます:

円環面輪環輪環体輪環面

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »