ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

古典論理

索引 古典論理

古典論理(こてんろんり, classical logic)は形式論理の部類で、最も研究され最も広く使われている論理である。標準論理(standard logic)とも呼ばれる。.

29 関係: 単調写像双対多値論理三段論法一階述語論理交換法則二重否定の除去ブール代数ブール論理ド・モルガンの法則命題論理アリストテレスオルガノンゴットロープ・フレーゲ冪等元 (数学)矛盾許容論理真理値無矛盾律非古典論理論理的帰結論理積論理演算排中律概念記法演算子最大と最小意味論数理論理学

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 古典論理と単調写像 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: 古典論理と双対 · 続きを見る »

多値論理

多値論理(たちろんり)とは、真理値の値を、いわゆる真偽値すなわち真と偽の2個だけでなく、3個あるいはそれ以上の多数の値とした論理体系で、非古典論理の一種である。.

新しい!!: 古典論理と多値論理 · 続きを見る »

三段論法

三段論法(さんだんろんぽう、συλλογισμός, シュロギスモス、syllogismus、syllogism)は、論理学における論理的推論の型式のひとつ。典型的には、大前提、小前提および結論という3個の命題を取り扱う。これを用いた結論が真であるためには、前提が真であること、および論理の法則(同一律、無矛盾律、排中律、および充足理由律)が守られることが必要とされる。 アリストテレスの『オルガノン』(『分析論前書』『分析論後書』)によって整備された。.

新しい!!: 古典論理と三段論法 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: 古典論理と一階述語論理 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 古典論理と交換法則 · 続きを見る »

二重否定の除去

二重否定の除去(にじゅうひていのじょきょ、Double negative elimination)は、論理学、特に命題論理における推論規則の1つである。いわゆる二重否定と等価なものを追加したり(二重否定の導入)、二重の否定作用素を削除したり(二重否定の除去)といった操作を論理式に施す。 これは、次の二つの文が等価であることに基づいている。 と 二重否定の除去を形式的に表すと次のようになる。 二重否定の導入を形式的に表すと次のようになる。 二重否定の導入(Double negative introduction)は、二重否定の除去の逆であり、命題の意味を変えずに二重否定を追加できることを意味している。 これらの規則はシークエントの記法を使うと次のようにも表せる。 これら2つの推論規則に演繹定理を適用すると、以下の2つの妥当な論理式が得られる。 これらは、次の1つの論理式にまとめることができる。 双方向の含意関係は同値関係であるため、整論理式内の任意の ¬¬A は A に置換でき、その際にその整論理式(wff)の真理値は変化しない。 二重否定の除去は古典論理では定理だが、直観論理ではそうではない。直観論理では「この場合、雨が降っていない、のではない(It's not the case that it's not raining)」という文は「雨が降っている」よりも弱いとされる。後者は雨が降っていることを証明する必要があるが、前者は単に雨が降っているとしても矛盾しないことを証明すればよい(自然言語における緩叙法形式でもこのような区別が見られる)。二重否定の導入は直観論理でも定理であり、また \neg \neg \neg A \vdash \neg A も直観主義でも成立する。 素朴集合論でも、補集合が同様の性質を持つ。集合 A と集合 (AC)C は等価である(ここで、AC は A の補集合を意味する)。.

新しい!!: 古典論理と二重否定の除去 · 続きを見る »

ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

新しい!!: 古典論理とブール代数 · 続きを見る »

ブール論理

ブール論理(ブールろんり、Boolean logic)は、古典論理のひとつで、その名称はブール代数ないしその形式化を示したジョージ・ブールに由来する。 リレーなどによる「スイッチング回路の理論」として1930年代に再発見され(論理回路#歴史を参照)、間もなくコンピュータに不可欠な理論として広まり、こんにちでは一般的に使われている。 本項目では、集合代数を用いて、集合、ブール演算、ベン図、真理値表などの基本的解説とブール論理の応用について解説する。ブール代数の記事ではブール論理の公理を満足する代数的構造の型を説明している。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。.

新しい!!: 古典論理とブール論理 · 続きを見る »

ド・モルガンの法則

ド・モルガンの法則(ド・モルガンのほうそく、De Morgan の法則)は、ブール論理や集合の代数学において、論理和と論理積と否定(集合のことばでは、共通部分と合併と補集合)の間に成り立つ規則性である。名前は数学者オーガスタス・ド・モルガン(1806–1871)にちなむ。 この関係性は(論理のことばで言うと)「真と偽を入替え、論理和を論理積を入替えた論理体系」は、元の論理体系と同一視できる、ということであるので、ド・モルガンの双対性(英: De Morgan's duality)と呼ばれることもある。.

新しい!!: 古典論理とド・モルガンの法則 · 続きを見る »

命題論理

命題論理(propositional logic)とは、数理論理学(記号論理学)の基礎的な一部門であり、命題全体を1つの記号に置き換えて単純化し、論理演算を表す記号(論理記号・論理演算子)を用いて、その命題(記号)間の結合パターンを表現・研究・把握することを目的とした分野のこと。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。 命題を1つの記号で大まかに置き換える命題論理に対して、命題の述語(P)と主語(S)を、関数のF(x)のように別記号で表現し、更に量化子で主語(S)の数・量・範囲もいくらか表現し分けることを可能にした、すなわちより詳細に命題の内部構造を表現できるようにしたものを、述語論理と呼ぶ。.

新しい!!: 古典論理と命題論理 · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 古典論理とアリストテレス · 続きを見る »

オルガノン

『オルガノン』(、)は、古代ギリシアの哲学者アリストテレスにより執筆された論理学に関する著作群の総称。.

新しい!!: 古典論理とオルガノン · 続きを見る »

ゴットロープ・フレーゲ

フリードリヒ・ルートヴィヒ・ゴットロープ・フレーゲ(Friedrich Ludwig Gottlob Frege, 1848年11月8日 - 1925年7月26日)は、ドイツの哲学者、論理学者、数学者であり、現代の数理論理学、分析哲学の祖にあたる。 フレーゲはバルト海に面したドイツの港町ヴィスマールの生まれである。母のアウグステ・ビアロブロツキーはポーランド系である。彼ははじめイェーナ大学で学び、その後ゲッティンゲン大学に移り1873年に博士号を取得した。その後イェーナに戻り、1896年から数学教授。1925年に死去した。.

新しい!!: 古典論理とゴットロープ・フレーゲ · 続きを見る »

冪等

数学において、冪等性(べきとうせい、idempotence 「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ.

新しい!!: 古典論理と冪等 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 古典論理と元 (数学) · 続きを見る »

矛盾許容論理

矛盾許容論理(むじゅんきょようろんり、Paraconsistent Logic)とは、矛盾を特別な方法で扱う論理体系。また、矛盾に対して耐性のある論理を研究・構築する論理学の一分野を指す。矛盾許容型論理とも。 矛盾許容論理は1910年ごろにはすでに存在していた(原始的な形ではアリストテレスまで遡る)。しかし、矛盾許容(Paraconsistent)という用語が使われるようになったのは 1976年であり、ペルー人哲学者 Francisco Miró Quesada が最初である。.

新しい!!: 古典論理と矛盾許容論理 · 続きを見る »

真理値

真理値 (しんりち、truth value) は、命題論理などの命題の真偽を示す値である。英語のTrueとFalseから、真に対してT、偽に対してFという記号をあてることもある。論理値 (logical value) も同じ。真と偽という値をとることから真偽値ともいうが、非古典論理などで多値論理における「真らしさ」の値も(真と偽以外の値にもなる)真理値である。 コンピュータプログラミング言語などのデータ型では、真理値のような型として真理値型(真偽値型、ブーリアン型などとも)があるものがある。関係演算子の結果などがブーリアン型であり、さらに論理演算子などで組み合わせることができ、それをif文などの制御構造や、条件演算子などで使用できる。.

新しい!!: 古典論理と真理値 · 続きを見る »

無矛盾律

無矛盾律(むむじゅんりつ、Law of noncontradiction)は、論理学の法則であり、アリストテレスによれば「ある事物について同じ観点でかつ同時に、それを肯定しつつ否定することはできない」こと。矛盾律(むじゅんりつ、Law of contradiction)とも。命題論理で表すと、次のようになる。 同一律、排中律と共に、アリストテレスの3つの思考の法則の1つとされている。.

新しい!!: 古典論理と無矛盾律 · 続きを見る »

非古典論理

非古典論理(ひこてんろんり、non-classical logic(s))は、古典論理におけるいくつかの仮定を否定、もしくは置き換えることによって構築された論理、あるいは、古典論理における仮定をすべて認めた上で新たな仮定を付け加えることによって構築された論理の総称である。.

新しい!!: 古典論理と非古典論理 · 続きを見る »

論理的帰結

論理的帰結(ろんりてききけつ、伴意、logical consequence, entailment)は、論理学における最も基本的な概念であり、複数の文(または命題)の集合と1つの文(命題)の間が「~だから、当然~」という繋がり方をする関係を指す。例えば、「カーミットは緑色だ」という文は、「全てのカエルは緑色だ」と「カーミットはカエルだ」の論理的帰結である。 このような論理的帰結の確かさは、前提が真かどうか、および完全かどうかに依存する。この前提は全てのカエルが緑色でない場合は真ではないことになる。演繹による推論や論理的帰結は認識論の重要な面であり、因果に関する一般的仮説を伝達する意味を持つ。 形式的な論理的帰結関係はモデル理論的なものと証明論的なもの(あるいは両方)がある。 論理的帰結は、文の集合から文の集合への関数としても表現できる(タルスキ風の定式化)し、2つの文の集合の間の関係としても表現できる(multiple-conclusion logic)。.

新しい!!: 古典論理と論理的帰結 · 続きを見る »

論理積

数理論理学において論理積(ろんりせき、logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 ベン図による論理積P \wedge Q の表.

新しい!!: 古典論理と論理積 · 続きを見る »

論理演算

論理演算(ろんりえんざん、logical operation)は、論理式において、論理演算子などで表現される論理関数(ブール関数)を評価し(正確には、関数適用を評価し)、変数(変項)さらには論理式全体の値を求める演算である。 非古典論理など他にも多くの論理の体系があるが、ここでは古典論理のうちの命題論理、特にそれを形式化したブール論理に話を絞る。従って対象がとる値は真理値の2値のみに限られる。また、その真理値の集合(真理値集合)と演算(演算子)はブール代数を構成する。 コンピュータのプロセッサやプログラミング言語で多用されるものに、ブーリアン型を対象とした通常の論理演算の他に、ワード等のビット毎に論理演算を行なう演算があり、ビット演算という。 なお、以上はモデル論的な議論であり、証明論的には、公理と推論規則に従って論理式を変形(書き換え)する演算がある(証明論#証明計算の種類)。.

新しい!!: 古典論理と論理演算 · 続きを見る »

排中律

排中律(はいちゅうりつ、Law of excluded middle)とは、論理学において、任意の命題 P に対し"P ∨ ¬P"(P であるか、または P でない)が成り立つことを主張する法則である。これは、論理の古典的体系では基本的な属性であり、同一律、無矛盾律とともに、(古典的な)思考の三原則のひとつに数えられる。しかし、論理体系によっては若干異なる法則となっている場合もあり、場合によっては排中律が全く成り立たないこともある(例えば直観論理)。 (第三の命題が排除される原理)あるいは(第三の命題・可能性は存在しない)と称され、Law of excluded middle(中間の命題は排除されて存在しない法則)または (第三の命題が排除される法則)と呼ばれ、これらが日本語での排中という表記につながり、排中原理と呼ばれる。 排中律は論理から導かれる法則ではない。また principle of bivalence とは異なる主張である。 修辞学では排中律が誤解されて利用されることがあり、誤謬の原因となっている。.

新しい!!: 古典論理と排中律 · 続きを見る »

概念記法

The title page of the original 1879 edition 『概念記法』(がいねんきほう、Begriffsschrift)はゴットロープ・フレーゲによって1879年に出版された論理学に関する短い本の題名であり,またその本で創始された形式体系の名称である。 この本の完全な書名は「算術の式言語を模した、純粋な思考のための一つの式言語 eine der arithmetischen nachgebildete Formelsprache des reinen Denkens」である。『概念記法』は,アリストテレスが論理学という主題を創設して以来,論理学に関するおそらく最も重要な出版物であった。フレーゲが自分の式を開発して論理に到達しようとした動機は,ライプニッツが彼の推論計算機に対して持った動機と似ている。続いてフレーゲは,数学の基礎の研究に彼の論理計算を用い,それは次の四半世紀にわたって遂行された。.

新しい!!: 古典論理と概念記法 · 続きを見る »

演算子

演算子(えんざんし、operator symbol, operator name)は、数式やコンピュータプログラミング言語などで、各種の演算を表わす記号・シンボルである。普通は、演算子は単なる記号ないし記号列であって構文論的なものであり、それに対応する演算は意味論の側にある。たとえばJavaにおいて、演算子 + を使った a + b という式は、構文論上は単にそういう式だというだけである。意味論的には数値の加算であったり、文字列の連結であったりするが、それは a と b の型に依って決まる(理論的には項書き換えのように、構文論的に意味論も与えられた演算子といったものもある)。 演算が作用する対象のことを被演算子(operand; オペランド、被演算数、引数)という。たとえば、n と 3 との和を表す式 "n + 3" において、"+" は演算子であり、その被演算子は "n" と "3" である。また、数式として一般的な被演算子と被演算子の間に演算子を記述する構文は中置記法と呼ばれる。 数学的には、基本的には、関数(単項演算子では1引数の関数、2項演算子は2引数の関数)をあらわすある種の糖衣構文のようなものに過ぎない。しかし、汎函数計算など、演算子を操作するような手法もある。.

新しい!!: 古典論理と演算子 · 続きを見る »

最大と最小

数学の様々な分野で順序が定まった対象に対し、最大のものや最小のものが考察されている。最大のものを表す標準的な記号として max、最小のものを表すものとして min が用いられる。この記事では最大・最小に関係した様々な話題を紹介する。.

新しい!!: 古典論理と最大と最小 · 続きを見る »

意味論

意味論(いみろん、英: semantics)とは、言語学では統語論に対置される分野、数学(とくに数理論理学)では証明論に対置される分野で、それらが中身(意味)に関与せず記号の操作によって対象を扱うのに対し、その意味について扱う分野である。なお、一般意味論というものもあるが、言語の使用に関する倫理を扱うものであり、ありていに言って無関係である。.

新しい!!: 古典論理と意味論 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 古典論理と数理論理学 · 続きを見る »

ここにリダイレクトされます:

古典論理学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »