ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

円分体

索引 円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

27 関係: 一意分解環平方剰余の相互法則二次体代数体代数的数体の拡大ヒルベルトの第12問題ディリクレ指標フィリップ・フルトヴェングラーフェルマーの最終定理アーベル群アーベル拡大エルンスト・クンマーオーギュスタン=ルイ・コーシーオイラーのφ関数カール・フリードリヒ・ガウスガロア理論円分多項式素因数分解素数類体論高木貞治L-函数正則素数有理数整数1の冪根

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 円分体と一意分解環 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 円分体と平方剰余の相互法則 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: 円分体と二次体 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 円分体と代数体 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 円分体と代数的数 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 円分体と体の拡大 · 続きを見る »

ヒルベルトの第12問題

ネッカーの青春の夢 (Kronecker's Jugendtraum) またはヒルベルトの第12問題(ヒルベルトのだい12もんだい、Hilbert's twelfth problem; ヒルベルトの23の問題より)は、「代数体のアーベル拡大は、もとの体に適当な解析函数の特殊値を添加してできる拡大体に含まれなければならない」という代数体のアーベル拡大を具体的に構成する方法を問う問題である。 有理数体にたいしては、そのアーベル拡大は円分体にふくまれるというクロネッカー・ウェーバーの定理が知られており、円分体は1のべき根により生成されるという具体的な構成法があたえられる。 虚数乗法の古典的な理論は「クロネッカーの青春の夢」として知られており、上の問題において代数体として虚二次体を選んだ場合の解答である。クロネッカーは、気に入った青春の夢 liebster Jugendtraum として、虚数乗法の考えを次のように書き表した。 ヒルベルトは、1900年8月8日にパリで開催された第2回国際数学者会議 (ICM) の講演において、本問題に関して次のように述べている。.

新しい!!: 円分体とヒルベルトの第12問題 · 続きを見る »

ディリクレ指標

ディリクレ指標(でぃりくれしひょう)とは、ディリクレがL関数を定義する際に導入した整数から複素数への関数である。.

新しい!!: 円分体とディリクレ指標 · 続きを見る »

フィリップ・フルトヴェングラー

フィリップ・フルトヴェングラー フィリップ・フルトヴェングラー(Philipp Furtwängler、1869年4月21日エルツェ(ドイツ) - 1940年5月19日ウィーン(オーストリア))は、数論を究めたドイツの数学者。 1896年、ゲッティンゲン大学で三次形式に関する博士論文(Zur Theorie der in Linearfaktoren zerlegbaren ganzzahlingen ternären kubischen Formen)をフェリックス・クラインの下で著した。1912年から1938年までの学究人生のほとんどをウィーン大学で送り、クルト・ゲーデルなどを教えた。彼は半身不随であり、車椅子に乗りながら教鞭を執った。 現在、彼の名は類体論における principal ideal theorem への貢献で最もよく知られている。.

新しい!!: 円分体とフィリップ・フルトヴェングラー · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 円分体とフェルマーの最終定理 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 円分体とアーベル群 · 続きを見る »

アーベル拡大

抽象代数学において、ガロア群がアーベル群となるようなガロア拡大のことをアーベル拡大 (abelian extension) と言う。ガロア群が巡回群のときは、巡回拡大 (cyclic extension) という。ガロア拡大が可解 (solvable) であるとは、ガロア群が可解、つまり中間拡大に対応するアーベル群の列からガロア群が構成されるときを言う。 有限体の全ての有限拡大は、巡回拡大である。類体論の発展は、数体と局所体と、有限体上の代数曲線の函数体のアーベル拡大についての詳細な情報をもたらした。 円分拡大という概念があり、2つの少し異なる定義がある。1つは1の冪根による拡大のことであり、もう1つはその部分拡大のことである。例えば円分体は円分拡大である。任意の円分拡大はいずれの定義でもアーベル拡大である。 体 K が 1 の原始 n 乗根を含み、K のある元の n 乗根が添加されると、この拡大はいわゆるクンマー拡大であり、これはアーベル拡大となる。(K の標数が p > 0 のとき、p は n を割らないと仮定しなければならない。もし割るようであれば、分離拡大ですらないからである。)しかしながら、一般に、元の n 乗根のガロア群は、n 乗根と1の冪根の双方に作用し、半直積として非可換ガロア群を構成する。クンマー理論は、アーベル拡大の場合を完全に記述する。クロネッカー・ウェーバーの定理は、K が有理数体のとき、拡大がアーベル的であるということと、拡大が1の冪根を添加して得られる体の部分体であることとは同値であると言う定理である。 トポロジーにおける基本群との重要な類似がある。基本群は空間の全ての被覆空間を分類する。すなわち、1次ホモロジー群に直接関連付ける基本群のアーベル化により、アーベル被覆が分類される。.

新しい!!: 円分体とアーベル拡大 · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: 円分体とエルンスト・クンマー · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 円分体とオーギュスタン=ルイ・コーシー · 続きを見る »

オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

新しい!!: 円分体とオイラーのφ関数 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 円分体とカール・フリードリヒ・ガウス · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 円分体とガロア理論 · 続きを見る »

円分多項式

円分多項式(えんぶんたこうしき、cyclotomic polynomial, Kreisteilungspolynom)とは1の冪根に関連のある多項式である。具体的には次の式で定義される多項式 を指す。 \Phi_n \left(x\right).

新しい!!: 円分体と円分多項式 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: 円分体と素因数分解 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 円分体と素数 · 続きを見る »

類体論

数学における類体論(るいたいろん、class field theory, Klassenkörpertheorie)は、有限体上の曲線の函数体や数体のアーベル拡大について、およびそのようなアーベル拡大に関する数論的性質について研究する、代数的整数論の一大分野である。理論の対象となる体は、一般に大域体もしくは一次元大域体と呼ばれるものである。 与えられた大域体の有限次アーベル拡大と、その体の適当なイデアル類もしくはその体のイデール類群の開部分群との間に一対一対応が取れるという事実によって、類体論の名がある。例えば、数体の最大不分岐アーベル拡大であるヒルベルト類体は、非常に特別なイデアル類に対応する。類体論は、大域体のイデール類群(即ち、体の乗法群によるイデールの商)によってその大域体の最大アーベル拡大のガロワ群へ作用する相互律準同型 (reciprocity homomorphism) を含む。大域体のイデール類群の各開部分群は、対応する類体拡大からもとの大域体へ落ちるノルム写像の像になっているのである。 標準的な方法論は、1930年代以降発達したで、これは大域体の完備化である局所体のアーベル拡大を記述するものであり、これを用いて大域類体論が構築される。.

新しい!!: 円分体と類体論 · 続きを見る »

高木貞治

木 貞治(たかぎ ていじ、1875年(明治8年)4月21日 - 1960年(昭和35年)2月28日)は、日本の数学者。東京帝国大学教授。第1回フィールズ賞選考委員。文化勲章受章。.

新しい!!: 円分体と高木貞治 · 続きを見る »

L-函数

数学で、L-函数(L-function)は複素平面上の有理型函数であり、いくつかの数学的対象のカテゴリから出てくる有理型函数に付帯している。L-級数(L-series)は、ディリクレ級数であり、大抵は半平面上で収束し、解析接続を通してL-函数を導くとみられる。 L-函数の理論は、非常に重要であり、未だ予想の段階のものも多く、現代の解析的整数論の分野である。そこでは、リーマンゼータ函数や、ディリクレ指標におけるL-級数の、広い一般化が構成されており、それらの一般的性質は、大半の場合が証明されていなく、系統的な方法なく研究されている。.

新しい!!: 円分体とL-函数 · 続きを見る »

正則素数

数論における正則素数(せいそくそすう、regular prime)とは、円の ''p'' 分体の類数を割り切らない素数 p のことであり、エルンスト・クンマーにより、考案された。小さいものから順に と続く。 クンマーは、奇素数の正則性は、p が k.

新しい!!: 円分体と正則素数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 円分体と有理数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 円分体と整数 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 円分体と1の冪根 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »