ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

倒立振子

索引 倒立振子

ボティクス系、台車駆動型倒立振子。1976年。 倒立振子(とうりつしんし inverted pendulum)とは、支点よりも重心が高い位置にある振り子をいう。写真に示すように、支点を台車に載せて実装する、台車駆動型倒立振子がよく知られている。ほとんどの応用例において振り子はある回転軸まわりにのみ運動するよう固定されており、自由度は1に制限されている。振り子は吊り下げられた状態が安定であり、したがって倒立振子は本質的に不安定であるため倒立状態を保つためには常に能動的に制御する必要がある。このためには支軸に直接トルクを加えたり、支点を水平方向もしくは鉛直方向に移動させることにより振り子の錘の回転速度を変化させることにより総トルクを変化させたりしてフィードバック系を構築する。支点を動かす型の倒立振子の一番簡単な例は、箒を手の上に立たせる系である。倒立振子は動力学と制御論における古典的な問題であり、制御戦略の試験用ベンチマークとして用いられる。また、パーソナルモビリティ分野において二輪倒立振子(例: セグウェイ)や自立安定一輪車(例: ホンダ・U3-X)などの形式で応用されつつある。 別の種類の倒立振子として、高層建築に用いられる傾斜計が挙げられる。建築物の基部にワイヤの一端を固定し、他端につけた浮きを建築物の最上部に油で浮かべ、浮きの平衡位置の変化を測定することで傾斜を検出する。.

45 関係: 一輪車二足歩行ロボット二重振り子微分方程式地震計ミサイルの誘導方式マシュー函数ラグランジュ力学リンク機構トランジスタ技術トルクパーソナルモビリティヒトファジィ制御フィードバックニューラルネットワークホンダ・U3-X制御理論オムニボットオイラー=ラグランジュ方程式セグウェイゼロモーメントポイント動力学CQ出版状態空間 (制御理論)球体ロボット空気力学独楽遺伝的アルゴリズム運動の第2法則運動の第3法則運動方程式角加速度重力加速度重心自立安定一輪車自由度自由振動自転PID制御振り子振動支点慣性モーメント2次元

一輪車

一輪車(いちりんしゃ)とは主にスポーツや曲技に使われる、地面に接する車輪を一つしか持たない自転車の一種。 英語のユニサイクル (Unicycle 、英語では原動機付きのものを含む) から略称はユニ (Uni) 、一輪車に乗る事はユニサイクリング (Unicycling) 、一輪車に乗る人間はユニサイクリスト (Unicyclist) と呼ばれる。 通常は動力無しで、人間自身がバランスを取って乗車するものを言う。電動および機械式制御によるものについては自立安定一輪車を参照。.

新しい!!: 倒立振子と一輪車 · 続きを見る »

二足歩行ロボット

二足歩行ロボット(にそくほこうロボット、Biped walking robotまたはBiped robot)とは、ロボットの中でも、人間のように二本足でバランスをとりながら歩くものをいう。特に人間と同様の形状をしているロボットをヒューマノイドと呼ぶが、ヒューマノイド全てが二足歩行ロボットであるとは限らない。 足(脚)とは回転機構で繋がった2つ以上のリンクで構成されたシリアルリンク機構で、二足歩行ロボットは脚を二つ持つ。世界初の二足歩行ロボットは1969年に早稲田大学の加藤一郎教授によって開発されたWAP-1である。1996年12月に発表されたホンダのP-2(後のASIMO)は人々に大きな衝撃を与えた。.

新しい!!: 倒立振子と二足歩行ロボット · 続きを見る »

二重振り子

二重振り子のアニメーションルンゲ=クッタ法による数値計算より 二重振り子(にじゅうふりこ、double pendulum)は振り子の先にもうひとつの振り子を連結したもの。振り子を一旦揺らすと、カオスと呼ばれる極めて複雑で非周期的な運動が発生することで知られている。実物を比較的手軽に製作可能なことから、カオス現象の紹介や入門としての演示実験によく使用される。.

新しい!!: 倒立振子と二重振り子 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 倒立振子と微分方程式 · 続きを見る »

地震計

地震計(じしんけい)は、地震の際の揺れを計測する機器である。.

新しい!!: 倒立振子と地震計 · 続きを見る »

ミサイルの誘導方式

ミサイルの誘導方式(ミサイルのゆうどうほうしき)では、ミサイルや誘導爆弾を目標へ誘導する方式についての記述を参照することができる。.

新しい!!: 倒立振子とミサイルの誘導方式 · 続きを見る »

マシュー函数

数学の分野におけるマシュー函数(マシューかんすう、)とは、ある特定の特殊函数のことで、以下に挙げるような様々な応用数学の問題を扱う上で有用となるものである。.

新しい!!: 倒立振子とマシュー函数 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 倒立振子とラグランジュ力学 · 続きを見る »

リンク機構

4つの節と1つの自由度を持つプライヤの例。調整用のねじを考慮すれば5つの節と2つの自由度を持つ。 リンク機構(リンクきこう)とは複数のリンクを組み合わせて構成した機械機構のことである。.

新しい!!: 倒立振子とリンク機構 · 続きを見る »

トランジスタ技術

『トランジスタ技術』(トランジスタぎじゅつ)は、CQ出版社が発行する電子工学専門月刊誌。1964年10月創刊。毎月10日発売。.

新しい!!: 倒立振子とトランジスタ技術 · 続きを見る »

トルク

トルク(torque)とは、力学において、ある固定された回転軸を中心にはたらく、回転軸のまわりの力のモーメントである。一般的には「ねじりの強さ」として表される。力矩、ねじりモーメントとも言う。.

新しい!!: 倒立振子とトルク · 続きを見る »

パーソナルモビリティ

パーソナルモビリティー (Personal Mobility) とは、1人乗りのコンパクトな移動支援機器。歩行者と既存の乗り物(自転車・原付・自動二輪車・乗用車など)の間を補完する目的で開発された個人向けの移動ツールであり、人が移動する際の1人当たりのエネルギー消費を抑制するという意図のもと、従来の自動車とは一線を画した移動体として提案されている。.

新しい!!: 倒立振子とパーソナルモビリティ · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: 倒立振子とヒト · 続きを見る »

ファジィ制御

ファジィ制御(ファジィせいぎょ、英語:fuzzy control) は、ファジィ集合 (fuzzy set) を利用して制御モデルや制御系を構成した制御である。ファジィ集合は、点がある集合に属するか属さないかのいずれかとなる通常の集合と異なり、中間の状態を許容した集合である。これにより、自然言語的(と、ファジィの研究者は主張する)あいまいな表現 − 例えば( とても大きい / やや大きい / やや小さい / とても小さい)など − に対しての中間的な値を対応させることができる。.

新しい!!: 倒立振子とファジィ制御 · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: 倒立振子とフィードバック · 続きを見る »

ニューラルネットワーク

ニューラルネットワーク(神経回路網、neural network、略称: NN)は、脳機能に見られるいくつかの特性を計算機上のシミュレーションによって表現することを目指した数学モデルである。研究の源流は生体の脳のモデル化であるが、神経科学の知見の改定などにより次第に脳モデルとは乖離が著しくなり、生物学や神経科学との区別のため、人工ニューラルネットワーク(artificial neural network、ANN)とも呼ばれる。.

新しい!!: 倒立振子とニューラルネットワーク · 続きを見る »

ホンダ・U3-X

ホンダ・U3-X U3-X(ユースリーエックス)とは本田技研工業が開発した、ひょうたんのような外見を持つ自立安定一輪車。コンセプトモデルであり市販の予定はない。.

新しい!!: 倒立振子とホンダ・U3-X · 続きを見る »

制御理論

制御理論(せいぎょりろん、control theory)とは、制御工学の一分野で、数理モデルを対象とした、主に数学を用いた制御に関係する理論である。いずれの理論も「モデル表現方法」「解析手法」「制御系設計手法」を与える。.

新しい!!: 倒立振子と制御理論 · 続きを見る »

オムニボット

ムニボットはタカラトミーの販売するエンタテインメントロボットシリーズ。.

新しい!!: 倒立振子とオムニボット · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: 倒立振子とオイラー=ラグランジュ方程式 · 続きを見る »

セグウェイ

ウェイ (Segway® Personal Transporter, PT) とは、アメリカの発明家ディーン・ケーメンを中心に開発され、Segway Inc.から発売されている電動立ち乗り二輪車。初期モデル (HT) 開発時のコードネームはジンジャー (Ginger)。.

新しい!!: 倒立振子とセグウェイ · 続きを見る »

ゼロモーメントポイント

モーメントポイント(、略称:ZMP)とは、二足歩行ロボットの軌道生成法と制御法において、重力だけでなく慣性力を加えた合力が路面と交わる点のことである。 1972年にユーゴスラビアミハイロピューピン研究所のミオミール・ブコブラトビッチ (Miomir Vukobratović) らによって提案された。.

新しい!!: 倒立振子とゼロモーメントポイント · 続きを見る »

動力学

動力学(どうりきがく、dynamics)は、物理学における古典物理学の一つの分野で、物体の動作における力の影響を扱うものである。 もとは力学 の一部から力の要因を考慮するものとしないもの(運動学、kinematics)とに区別され、後に力の要因を考慮する力学から平衡状態を扱う静力学(statics)と非平衡状態をあつかう動力学へ区別された。量子力学においては、動力学は量子電磁力学や量子色力学のように、どのように力が量子化されているか、という形で取り扱われている。.

新しい!!: 倒立振子と動力学 · 続きを見る »

CQ出版

CQ出版株式会社(シーキューしゅっぱん)は、東京都文京区に本社を置く出版社。アマチュア無線・電子工学関連の雑誌、書籍を発行する。.

新しい!!: 倒立振子とCQ出版 · 続きを見る »

状態空間 (制御理論)

態空間(じょうたいくうかん、State Space)あるいは状態空間表現(じょうたいくうかんひょうげん、State Space Representation)は、制御工学において、物理的システムを入力と出力と状態変数を使った一階連立微分方程式で表した数学的モデルである。入力、出力、状態は複数存在することが多いため、これらの変数はベクトルとして表され、行列形式で微分代数方程式を表す(力学系が線形で時不変の場合)。状態空間表現は時間領域の手法であり、これを使うと複数の入力と出力を持つシステムをコンパクトにモデル化でき、解析が容易になる。周波数領域では、p 個の入力と q 個の出力があるとき、システム全体を現すには q \times p 個のラプラス変換を書かなければならない。周波数領域の手法とは異なり、状態空間表現では、線形性と初期値がゼロという制限は存在しない。「状態空間」は、その次元軸が個々の状態変数に対応することから名づけられている。システムの状態はこの空間内のベクトルとして表現される。.

新しい!!: 倒立振子と状態空間 (制御理論) · 続きを見る »

球体ロボット

球体ロボットとは球体を備えるロボットである。.

新しい!!: 倒立振子と球体ロボット · 続きを見る »

空気力学

気力学(くうきりきがく、aerodynamics)とは、流体力学の一種で、空気(または他の気体)の運動作用や、空気中を運動する物体への影響を扱う。航空分野においては航空力学と関係している。.

新しい!!: 倒立振子と空気力学 · 続きを見る »

独楽

楽(こま)は何らかの塊を軸を中心として回転させて遊ぶ伝統的な玩具の一種。軸の先は細くなっており、周りにバランスをとるための重りがついている。.

新しい!!: 倒立振子と独楽 · 続きを見る »

遺伝的アルゴリズム

遺伝的アルゴリズム(いでんてきアルゴリズム、英語:genetic algorithm、略称:GA)とは、1975年にミシガン大学のジョン・H・ホランド(John Henry Holland)によって提案された近似解を探索するメタヒューリスティックアルゴリズムである。人工生命同様、偶然の要素でコンピューターの制御を左右する。4つの主要な進化的アルゴリズムの一つであり、その中でも最も一般的に使用されている。.

新しい!!: 倒立振子と遺伝的アルゴリズム · 続きを見る »

運動の第2法則

運動の第2法則(うんどうのだい2ほうそく、Newton's second law)は、ニュートン力学の基礎をなす三つの運動法則の一つ。第2法則は運動の第1法則が成り立つ座標系、すなわち慣性系における、物体の運動状態の時間変化と物体に作用する力の関係を示す法則である。ときに第2法則のみを指してニュートンの法則と呼ばれることもある。 運動の第2法則はアイザック・ニュートンによって発見され、1687年に出版した『自然哲学の数学的諸原理』において発表された。 運動の第2法則から、ニュートン力学における物体の運動方程式(ニュートンの方程式)が導かれる。ニュートン自身は運動方程式を明示的に用いてはおらず、ニュートンの方程式はレオンハルト・オイラーによって、1749年の (『天体の運動一般に関する研究』)で初めて公表された。.

新しい!!: 倒立振子と運動の第2法則 · 続きを見る »

運動の第3法則

運動の第3法則(うんどうのだいさんほうそく、)は、2物体が互いに力を及ぼし合うとき、それらの力は向きが反対で大きさが等しいと主張する経験則である。作用・反作用の法則(さよう・はんさようのほうそく)とも呼ばれる。 2個の質点 A と B があり、互いに力を及ぼしあっているとき、質点 A が質点 B から受ける力 \vec_ (作用)と質点 B が質点 A から受ける力 \vec_(反作用)は、大きさが等しく向きが反対である。すなわち、 が成り立つ。 質点 A と B を一つの系(対象)として扱うとき、両質点が互いに及ぼし合う力を内力といい、内力以外の力を外力という。2つの質点 A B が外力の作用を受けずに運動するとき、A と B の重心 G の運動について、.

新しい!!: 倒立振子と運動の第3法則 · 続きを見る »

運動方程式

運動方程式(うんどうほうていしき)とは、物理学において運動の従う法則を数式に表したもの。英語の equation of motion から EOM と表記されることもある。 以下のようなものがある。.

新しい!!: 倒立振子と運動方程式 · 続きを見る »

角加速度

角加速度(かくかそくど、angular acceleration)は、角速度の変化率を意味する。単位はSI単位系ではラジアン毎秒毎秒 (rad/s2) で、または度毎秒毎秒 (deg/s2) が用いられることもある。数式中の記号はギリシア文字のαで表されることが多い。.

新しい!!: 倒立振子と角加速度 · 続きを見る »

重力加速度

重力加速度(じゅうりょくかそくど、gravitational acceleration)とは、重力により生じる加速度である。.

新しい!!: 倒立振子と重力加速度 · 続きを見る »

重心

重心(じゅうしん、center of gravity)は、力学において、空間的広がりをもって質量が分布するような系において、その質量に対して他の物体から働く万有引力(重力)の合力の作用点である。重力が一様であれば、質量中心(しつりょうちゅうしん、center of mass)と同じであるためしばしば混同されており、本来は異なるのだが、当記事でも基本的には用語を混同したまま説明する(人工衛星の安定に関してなど、これらを区別して行う必要がある議論を除いて、一般にはほぼ100%混同されているためである)。 一様重力下で、質量分布も一様である(または図形の頂点に等質量が凝集している)ときの重心は幾何学的な意味での「重心」(幾何学的中心、)と一致する。より一般の状況における重心はの項を参照せよ。.

新しい!!: 倒立振子と重心 · 続きを見る »

自立安定一輪車

自立安定一輪車(じりつあんていいちりんしゃ)とは機械制御により自立安定性を備えた、地面に接する車輪を一つしか持たない車両。 地面に接する車輪を一つしか持たないと言う点では、一輪車の一種とも言える。.

新しい!!: 倒立振子と自立安定一輪車 · 続きを見る »

自由度

自由度(じゆうど、degree of freedom)とは、一般に、変数のうち独立に選べるものの数、すなわち、全変数の数から、それら相互間に成り立つ関係式(束縛条件、拘束条件)の数を引いたものである。数学的に言えば、多様体の次元である。「自由度1」、「1自由度」などと表現する。 自由度は、力学、機構学、統計学などで使用され、意味は上記の定義に準じるが、それぞれの具体的に示唆する処は異なる。.

新しい!!: 倒立振子と自由度 · 続きを見る »

自由振動

自由振動(じゆうしんどう、free oscillation、free vibration)とは、ある系がその固有振動数で振動することである。減衰のない自由振動では強制振動とは異なり、系に外部から力が作用しなくても運動しつづける。.

新しい!!: 倒立振子と自由振動 · 続きを見る »

自転

自転(じてん、rotation)とは、物体がその内部の点または軸のまわりを回転すること、およびその状態である。 天体の自転運動を表す言葉として用いられることが多い。力学における剛体の自転は、単に回転と呼ぶことの方が多く、オイラーの運動方程式により記述できる。英語で自転を意味する spin に由来するスピンという言葉も同義語であるが、物体の自転の意味でのスピンは自然科学以外の分野で用いられることが多い。例えばフィギュアスケートにおけるスピンや自動車がスリップして起きるスピンがある。量子力学や素粒子物理学におけるスピンも語源は自転に由来するが、物体の自転とは異なる概念と考えられている。.

新しい!!: 倒立振子と自転 · 続きを見る »

PID制御

PID制御(ピーアイディーせいぎょ、Proportional-Integral-Differential Controller、PID Controller)は、制御工学におけるフィードバック制御の一種であり、入力値の制御を出力値と目標値との偏差、その積分、および微分の3つの要素によって行う方法のことである。制御理論の一分野をなす古典制御論の枠組みで体系化されたもので長い歴史を持っている。フィードバック制御の基礎ともなっており、様々な制御手法が開発・提案され続けている今に至っても、過去の実績や技術者の経験則の蓄積により調整を行いやすいため、産業界では主力の制御手法であると言われている。.

新しい!!: 倒立振子とPID制御 · 続きを見る »

振り子

振り子(ふりこ、pendulum)とは、空間固定点(支点)から吊るされ、重力の作用により、揺れを繰り返す物体である。支点での摩擦や空気抵抗の無い理想の環境では永久に揺れ続ける。時計や地震計などに用いられる。 振り子についての最初の研究記録はアリストテレス、ギリシャ人の哲学者による。さらに 17世紀、ガリレオにはじまる物理学者らよる観測の結果、等時性が発見され時計に使用されるようになった。 同じように等時性を示す装置として、ばね振り子やねじれ振り子などがある。.

新しい!!: 倒立振子と振り子 · 続きを見る »

振動

振動(しんどう、oscillation、vibration)とは、状態が一意に定まらず揺れ動く事象をいう。英語では、重力などによる周期が長い振動と、弾性や分子間力などによる周期の短い振動は別の語が充てられるが、日本語では周期によらず「振動」という語で呼ばれる。周期性のある振動において、単位時間あたりの振動の数を振動数(または周波数)、振動のふれ幅を振幅、振動の一単位にかかる時間を周期という。 振動は、同じ場所での物質の周期的な運動であるが、物理学においてさまざまな現象の中に現れ、基本的な概念の一つとして扱われる。物理的にもっとも単純な振動は単振動である。また、振動する系はそれぞれ固有振動(数)をもつ。振動の振幅を減少させる要因がある場合には、振動が次第に弱まる減衰振動となる。外部から一定の間隔で力を与えることなどにより振動を引き起こすことを強制振動とよぶ。強制振動の振動数がその系の固有振動数に近い場合、共振(または共鳴とも)を引き起こす。古典物理学だけでなく、電磁気学では電気回路や電場・磁場の振動を扱い、またミクロな現象を扱う現代物理学などにおいても、振動は基本的な性質である。 波動現象は、振動が時間的変化にとどまらず空間的に伝わっていく現象であり、自然現象の理解になくてはならない基礎概念へと関連している。.

新しい!!: 倒立振子と振動 · 続きを見る »

支点

構造力学において支点(してん、support)とは、構造物と地盤あるいは構造物と構造物を結合し二見(1963)、p.18。、構造物を静止させ安定させる支持点のこと崎本(1991)、p.35。。単に支持(しじ)ともいう西野・長谷川(1983)、p.10。。 橋梁においては、支承という装置に該当する米田(2003)、p.7。。 構造物に荷重が作用し、その反作用で支点に発生する力を支点反力(してんはんりょく、reaction二見(1963)、p.25。)という。.

新しい!!: 倒立振子と支点 · 続きを見る »

慣性モーメント

慣性モーメント(かんせいモーメント、moment of inertia)あるいは慣性能率(かんせいのうりつ)、イナーシャ とは、物体の角運動量 と角速度 との間の関係を示す量である。.

新しい!!: 倒立振子と慣性モーメント · 続きを見る »

2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

新しい!!: 倒立振子と2次元 · 続きを見る »

ここにリダイレクトされます:

倒立振り子逆立ち振り子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »