ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

チェビシェフの不等式

索引 チェビシェフの不等式

チェビシェフの不等式(チェビシェフのふとうしき)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフにより初めて証明された。 標本あるいは確率分布は、平均のまわりに、ある標準偏差をもって分布する。この分布と標準偏差の間に、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から 2標準偏差以上離れた値は全体の 1/4 を超えることはなく、一般にn標準偏差以上離れた値は全体の 1/n2 を超えることはない。.

18 関係: 大数の法則定理実数不等式平均マルコフの不等式パフヌティ・チェビシェフ分散 (確率論)確率分布確率論無限関数 (数学)標準偏差標本次元測度論期待値指示関数

大数の法則

大数の法則(たいすうのほうそく、law of large numbers)は、確率論・統計学における極限定理のひとつで、「経験的確率と理論的確率が一致する」 という、素朴な意味での確率を意味付け、定義付ける法則である。 厳密には、ヤコブ・ベルヌーイによる大数の弱法則 と、エミール・ボレルやアンドレイ・コルモゴロフによる大数の強法則 とがある。単に「大数の法則」と言った場合、どちらを指しているのかは文脈により判断する必要がある。.

新しい!!: チェビシェフの不等式と大数の法則 · 続きを見る »

定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

新しい!!: チェビシェフの不等式と定理 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: チェビシェフの不等式と実数 · 続きを見る »

不等式

不等式(ふとうしき、inequality)とは不等号(ふとうごう)を用いて、数量の大小関係を表した式を言う。 値や量を評価するという意味では等式を不等式の一種であると見なすこともできる。.

新しい!!: チェビシェフの不等式と不等式 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: チェビシェフの不等式と平均 · 続きを見る »

マルコフの不等式

マルコフの不等式は確率論で、確率変数の非負値関数の値が、ある正の定数以上になる確率の上限を与える不等式である。アンドレイ・マルコフが証明した。 マルコフの不等式は確率と期待値の関係を述べたもので、ランダム変数の累積分布関数に関して大まかではあるが有用な限界を与える。.

新しい!!: チェビシェフの不等式とマルコフの不等式 · 続きを見る »

パフヌティ・チェビシェフ

パフヌーティー・リヴォーヴィッチ・チェビシェフ(Пафну́тий Льво́вич Чебышёв、ラテン転写: Pafnuty Lvovich Chebyshev、1821年5月16日(ユリウス暦5月4日) - 1894年12月8日(ユリウス暦11月26日))は、ロシアの数学者。ラテン文字を用いる地域での姓の転写方法はさまざまであり、Chebychev、Chebyshov、Tchebycheff、Tschebyscheffなどがある。日本語表記もチビショフ、シェビチェフなど揺れが大きい(なおロシア語での発音はチィビショーフに近い)。.

新しい!!: チェビシェフの不等式とパフヌティ・チェビシェフ · 続きを見る »

分散 (確率論)

率論および統計学において、分散(ぶんさん、variance)は、確率変数の2次の中心化モーメントのこと。これは確率変数の分布が期待値からどれだけ散らばっているかを示す非負の値である。 記述統計学においては標本が標本平均からどれだけ散らばっているかを示す指標として標本分散(ひょうほんぶんさん、sample variance)を、推測統計学においては不偏分散(ふへんぶんさん、unbiased (sample) variance)を用いる。 に近いほど散らばりは小さい。 日本工業規格では、「確率変数 からその母平均を引いた変数の二乗の期待値。 である。」と定義している。 英語の variance(バリアンス)という語はロナルド・フィッシャーが1918年に導入した。.

新しい!!: チェビシェフの不等式と分散 (確率論) · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: チェビシェフの不等式と確率分布 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: チェビシェフの不等式と確率論 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: チェビシェフの不等式と無限 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: チェビシェフの不等式と関数 (数学) · 続きを見る »

標準偏差

標準偏差(ひょうじゅんへんさ、)は、日本工業規格では、分散の正の平方根と定義している。データや確率変数の散らばり具合(ばらつき)を表す数値のひとつ。物理学、経済学、社会学などでも使う。例えば、ある試験でクラス全員が同じ点数、すなわち全員が平均値の場合、データにはばらつきがないので、標準偏差は 0 になる。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。二乗平均平方根 (RMS) と混同されることもある。両者の差異については、二乗平均平方根を参照。.

新しい!!: チェビシェフの不等式と標準偏差 · 続きを見る »

標本

標本(ひょうほん)は、全体の中から取り出し観察・調査を行う一部分をいう。分野によって特定の意味を持つ場合がある。 ()鉱物、生物、化石などの全体(個体、群体など)または一部(組織、細胞など)を、繰り返し観察し、データが取得できるように保存処置を講じたものを標本と呼ぶ。しばしば必要に応じて固定・染色等の処置を施し、研究目的に沿った観察に適するようにする。次の項目を参照。.

新しい!!: チェビシェフの不等式と標本 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

新しい!!: チェビシェフの不等式と次元 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: チェビシェフの不等式と測度論 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: チェビシェフの不等式と期待値 · 続きを見る »

指示関数

数学において指示関数(しじかんすう、indicator function)、集合の定義関数、特性関数(とくせいかんすう、characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。.

新しい!!: チェビシェフの不等式と指示関数 · 続きを見る »

ここにリダイレクトされます:

チェブィシェフの不等式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »