ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

不等式

索引 不等式

不等式(ふとうしき、inequality)とは不等号(ふとうごう)を用いて、数量の大小関係を表した式を言う。 値や量を評価するという意味では等式を不等式の一種であると見なすこともできる。.

24 関係: 変数 (数学)不等号三角不等式代数学チェビシェフの不等式メビウス関数ヘルダーの不等式ブルンの定理イェンセンの不等式エラトステネスの篩ギブスの不等式クラフトの不等式コーシー=シュワルツの不等式シュールの不等式等式素数線型計画法順序体順序集合解析学恒等式方程式数学数学 (教科)

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: 不等式と変数 (数学) · 続きを見る »

不等号

不等号(ふとうごう)は、実数などの大小を表すための数学記号である。より一般的には、順序集合(例: 整数、実数)の2つの要素の間の順序(大小ともいう)を表す。 順序集合の二つの元は、等しいか、片方が他方より大きいか、等しくなく大小関係がないか、のいずれかである。 2つが等しい場合は等号(.

新しい!!: 不等式と不等号 · 続きを見る »

三角不等式

数学における三角不等式(さんかくふとうしき、triangle inequality)は、任意の三角形に対してその任意の二辺の和が残りの一辺よりも大きくなければならないことを述べるものである。三角形の三辺が で最大辺が とすれば、三角不等式は が成り立つことを主張している.

新しい!!: 不等式と三角不等式 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 不等式と代数学 · 続きを見る »

チェビシェフの不等式

チェビシェフの不等式(チェビシェフのふとうしき)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフにより初めて証明された。 標本あるいは確率分布は、平均のまわりに、ある標準偏差をもって分布する。この分布と標準偏差の間に、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から 2標準偏差以上離れた値は全体の 1/4 を超えることはなく、一般にn標準偏差以上離れた値は全体の 1/n2 を超えることはない。.

新しい!!: 不等式とチェビシェフの不等式 · 続きを見る »

メビウス関数

メビウス関数(メビウスかんすう)は、数論や組合せ論における重要な関数である。メビウスの輪で有名なドイツの数学者アウグスト・フェルディナント・メビウス (August Ferdinand Möbius) が1831年に紹介したことから、この名が付けられた。.

新しい!!: 不等式とメビウス関数 · 続きを見る »

ヘルダーの不等式

解析学におけるヘルダーの不等式(- ふとうしき, Hölder's inequality)とは、数列や可測関数のあいだに成り立つもっとも基本的な不等式の一つであり、 測度空間上の''Lp''空間の構造の解析などにしばしば用いられる。オットー・ヘルダーにちなんでこの名前がついている。歴史的には1888年にレオナルド・J・ロジャーズによって、さらにその翌年にヘルダーによって独立に発見された。.

新しい!!: 不等式とヘルダーの不等式 · 続きを見る »

ブルンの定理

ブルンの定理(ブルンのていり)はヴィーゴ・ブルンによって1919年に発見された、解析的整数論の定理である。 P(x) を p + 2 が素数であるような素数 p ≤ x の個数を表す関数としよう。 このとき x ≧ 3 において、以下の不等式が成り立つような定数 c が存在する。 ヴィーゴ・ブルンはここから双子素数の逆数の和が収束することを導いた。証明にはエラトステネスの篩を基にした篩の方法が使われ、その中でメビウス関数などが、用いられている。また補題として算術の基本定理が使われている。これは篩の方法が最初に本格的な結果を得るために使われた事例であると同時に双子素数に関する最初の理論的な成果であり、双子素数に関する研究の出発点となった。 ブルンは後にこの方法を改良し、二重対数の項を除くことに成功した。ブルンはより一般に、P(x, z) を n と n + 2 が共に z より小さな素因数を持たない自然数 n ≤ x の個数とするとき、 となる定数 c が存在すること、および z P(x,z)>c \frac となる定数 c が存在する、よって n と n + 2 が共に高々9個の素因数しか持たない n が無限に多く存在することを示した。 同様な結果はセルバーグの篩い法を用いても得られる。.

新しい!!: 不等式とブルンの定理 · 続きを見る »

イェンセンの不等式

イェンセンの不等式(いぇんせんのふとうしき、Jensen's inequality)は、凸関数を使った不等式である。 f(x) を実数上の凸関数とする。 離散の場合: p_1, \, p_2, \, \ldots を、p_1 + p_2 + \cdots.

新しい!!: 不等式とイェンセンの不等式 · 続きを見る »

エラトステネスの篩

ラトステネスの篩 (エラトステネスのふるい、Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がある。.

新しい!!: 不等式とエラトステネスの篩 · 続きを見る »

ギブスの不等式

ブスの不等式(ぎぶすのふとうしき、英: Gibbs' inequality)とは、情報理論における離散確率分布のエントロピーに関する式である。確率分布のエントロピーに関しては、ギブスの不等式を出発点としていくつかの式が考案されており、ファーノの不等式などがある。 この不等式は19世紀にウィラード・ギブスが最初に提示した。.

新しい!!: 不等式とギブスの不等式 · 続きを見る »

クラフトの不等式

ラフトの不等式(くらふとのふとうしき、Kraft's inequality)は、符号理論における不等式の1つで可変長符号が一意復号可能である為の必要条件を与える。等号成立条件は符号が完全である事である。クラフトの不等式は可変長符号が一意復号可能である為の十分条件ではないが、クラフトの不等式を満たす任意のパラメータに対し、そのパラメータを実現する一意復号可能な可変長符号の存在性が保証される。 計算機科学や情報理論で利用される接頭符号やトライ木で応用されている。 元々のクラフトの結果は接頭符号に対してのものだった。後にマクミランは任意の一意復号可能符号でも同様の不等式が成立することを示した。このためクラフト・マクミランの不等式とも呼ばれる。.

新しい!!: 不等式とクラフトの不等式 · 続きを見る »

コーシー=シュワルツの不等式

数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。.

新しい!!: 不等式とコーシー=シュワルツの不等式 · 続きを見る »

シュールの不等式

ュールの不等式(シュールのふとうしき)は、イサイ・シュールにちなんで名付けられた、非負実数 x, y, z と正数 t に対して成り立つ、次の絶対不等式である。 等号成立は x.

新しい!!: 不等式とシュールの不等式 · 続きを見る »

等式

等式(とうしき、equation)とは、二つの対象の等価性・相等関係 (equality) を表す数式のことである。.

新しい!!: 不等式と等式 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 不等式と素数 · 続きを見る »

線型計画法

線型計画法(せんけいけいかくほう LP; linear programming )とは、いくつかの1次不等式および1次等式を満たす変数の値の中で、ある1次式を最大化または最小化する値を求める方法である。線型計画問題を解く手法。.

新しい!!: 不等式と線型計画法 · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 不等式と順序体 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 不等式と順序集合 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 不等式と解析学 · 続きを見る »

恒等式

恒等式(こうとうしき、identity)は、恒真な等式、すなわち等号 (.

新しい!!: 不等式と恒等式 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 不等式と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 不等式と数学 · 続きを見る »

数学 (教科)

教科「数学」(すうがく、mathematics, math)は、中等教育の課程(中学校の課程、高等学校の課程、中等教育学校の課程など)における教科の一つである。 本項目では、主として現在の学校教育における教科「数学」について取り扱う。関連する理論・実践・歴史などについては「算数・数学教育」を参照。.

新しい!!: 不等式と数学 (教科) · 続きを見る »

ここにリダイレクトされます:

一次不等式二次不等式絶対不等式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »