ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アルファ磁気分光器

索引 アルファ磁気分光器

アルファ磁気分光器(Alpha Magnetic Spectrometer)は、国際宇宙ステーションに搭載されている素粒子物理学の実験装置である。AMS-02とも呼ばれる。宇宙線を測定し、様々な種類の未知の物質を調査することを目的に設計されている。この実験によって宇宙の構造がより明確にされ、暗黒物質や反物質の性質を解明する手がかりになることが期待されている。代表研究者はノーベル物理学者のサミュエル・ティンで、機体の最終試験はオランダにある欧州宇宙機関のヨーロッパ宇宙研究技術センターで行われ、2010年8月にフロリダのケネディ宇宙センターに搬送された。当初は同年7月のスペース・シャトルエンデバー号の最後の飛行となるSTS-134(エンデバー号)で打ち上げられる予定であったが延期され、AMS-02を載せたSTS-134は2011年5月に打ち上げられた。 AMS-02の初期観測報告は、2013年4月3日に行われ、宇宙線の中から暗黒物質(ダークマター)の証拠を検出した可能性があると発表した。しかし、他の天文現象であった可能性も残っているため、引き続き観測・分析を続けて明らかにしていくとした。.

123 関係: 加速器原子核反物質反陽子同位体天体天文現象宇宙宇宙マイクロ波背景放射宇宙ステーション宇宙空間宇宙線宇宙船宇宙開発宇宙望遠鏡の一覧常伝導人工衛星の軌道低軌道ミールマサチューセッツ工科大学チャームクォークチェレンコフ放射チタンバラク・オバマメガビットレスールスDK1ロボットアームワットボトムクォークトラス (ISS)トップクォークヘリウムヒューストンビーム (物理学)ビッグバンテキサス州テスラ (単位)ディスカバリー (オービタ)フロリダ州ドルニューヨーク・タイムズニュートラリーノニオブダークエネルギーダウンクォークアメリカ合衆国大統領アメリカ合衆国上院アメリカ合衆国下院アメリカ合衆国エネルギー省アメリカ航空宇宙局...イタリアエネルギーエンデバー (オービタ)オランダガンマ線ギガビットクォークケネディ宇宙センターケネディ宇宙センター第39発射施設ケイ素コロンビア号空中分解事故コイルジュネーヴジョンソン宇宙センタージョージ・W・ブッシュスペースシャトルストレンジレットストレンジクォークスイスサミュエル・ティン国際宇宙ステーション国際宇宙ステーション組立順序CP対称性の破れ火星磁場磁石磁束密度粒子素粒子素粒子物理学真空熱力学温度物理学物質銀河銀河系荷電粒子質量超伝導超伝導超大型加速器軌道傾斜角近点・遠点電力電磁両立性電波障害陽電子STS-134暗黒物質核子欧州原子核研究機構欧州宇宙機関気球有人宇宙飛行流束放射線感度10月15日1995年1998年1999年2003年2005年2006年2008年2009年2010年2011年2015年2月16日7月11日9月25日9月27日 インデックスを展開 (73 もっと) »

加速器

加速器(かそくき、particle accelerator)とは、荷電粒子を加速する装置の総称。原子核/素粒子の実験による基礎科学研究のほか、癌治療、新素材開発といった実用にも使われる。 前者の原子核/素粒子の加速器実験では、最大で光速近くまで粒子を加速させることができる。粒子を固定標的に当てる「フィックスドターゲット実験」と、向かい合わせに加速した粒子を正面衝突させる「コライダー実験」がある。.

新しい!!: アルファ磁気分光器と加速器 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: アルファ磁気分光器と原子核 · 続きを見る »

反物質

反物質(はんぶっしつ、)は、ある物質と比して質量とスピンが全く同じで、構成する素粒子の電荷などが全く逆の性質を持つ反粒子によって組成される物質。例えば、電子はマイナスの電荷を持つが、反電子(陽電子)はプラスの電荷を持つ。中性子と反中性子は電荷を持たないが、中性子はクォーク、反中性子は反クォークから構成されている。.

新しい!!: アルファ磁気分光器と反物質 · 続きを見る »

反陽子

反陽子(はんようし)とは、陽子(プロトン)と質量とスピンが全く同じで、逆の電荷、すなわち−1の電荷を持つ反粒子である。 反陽子は1955年にセグレとチェンバレンによってカリフォルニア大学バークレー校の加速器ベバトロンを使った実験で最初に発見された。.

新しい!!: アルファ磁気分光器と反陽子 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

新しい!!: アルファ磁気分光器と同位体 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: アルファ磁気分光器と天体 · 続きを見る »

天文現象

天文現象(てんもんげんしょう)とは、天(この「天」には空や大気圏の上層部や宇宙空間までもが含まれる)に現れる様々な現象の総称。これを文様(模様、綾)に見立てて天文といい、周期的な変化を調べて暦や卜占に利用した。『易経』賁の卦の「天文を観て以て時の変を察す」、繫辞伝の「仰いで以て天文を観、俯して以て地理を察す。是の故に幽明の故を知る」に由来するとされる。天象とも。 これらは観天望気の対象であったが後に気象とは区別されて天体観測が専らとなり、特に惑星の運行は洋の西と東を問わず天文学者により詳細に調べられた。望遠鏡の発明により太陽や月以外も明確に天体として認識されるようになると、物理学の一分野として発展を遂げ(→天体物理学)、以降の天文学は恒星を含む宇宙の諸現象を研究する自然科学の分野となった。一方の卜占からは学問的な裏付けが排除されたが、信仰や迷信の一部として現代でも広く残る。 現代の天体観測は実業のみでなくレクリエーションにもなっている(天体観望)。.

新しい!!: アルファ磁気分光器と天文現象 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: アルファ磁気分光器と宇宙 · 続きを見る »

宇宙マイクロ波背景放射

cmあたりの波数。横軸の5近辺の波長1.9mm、160.2Ghzにピークがあることが読み取れる WMAPによる宇宙マイクロ波背景放射の温度ゆらぎ。 宇宙マイクロ波背景放射(うちゅうマイクロははいけいほうしゃ、cosmic microwave background; CMB)とは、天球上の全方向からほぼ等方的に観測されるマイクロ波である。そのスペクトルは2.725Kの黒体放射に極めてよく一致している。 単に宇宙背景放射 (cosmic background radiation; CBR)、マイクロ波背景放射 (microwave background radiation; MBR) 等とも言う。黒体放射温度から3K背景放射、3K放射とも言う。宇宙マイクロ波背景輻射、宇宙背景輻射などとも言う(輻射は放射の同義語)。.

新しい!!: アルファ磁気分光器と宇宙マイクロ波背景放射 · 続きを見る »

宇宙ステーション

国際宇宙ステーション 宇宙ステーション(うちゅうステーション、Space station、Орбитальная станция)は、地球の軌道上などの宇宙空間にあり、人間がそこで生活し続けられるように設計されている人工天体のことである。.

新しい!!: アルファ磁気分光器と宇宙ステーション · 続きを見る »

宇宙空間

地球大気の鉛直構造(縮尺は正しくない) 宇宙空間(うちゅうくうかん、)は、地球およびその他の天体(それぞれの大気圏を含む)に属さない空間領域を指す。また別義では、地球以外の天体を含み、したがって、地球の大気圏よりも外に広がる空間領域を指す。なお英語では を省いて単に と呼ぶ場合も多い。 狭義の宇宙空間には星間ガスと呼ばれる水素 (H) やヘリウム (He) や星間物質と呼ばれるものが存在している。それらによって恒星などが構成されていく。.

新しい!!: アルファ磁気分光器と宇宙空間 · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: アルファ磁気分光器と宇宙線 · 続きを見る »

宇宙船

ェミニ 6号 スペースシャトルのオービタ(チャレンジャー、1983年) 宇宙船(うちゅうせん、)は、宇宙機のなかで、とくに人の乗ることを想定しているものを言う。有人宇宙機とも。.

新しい!!: アルファ磁気分光器と宇宙船 · 続きを見る »

宇宙開発

宇宙空間で作業を行う宇宙飛行士。 宇宙開発(うちゅうかいはつ、)は、宇宙空間を人間の社会的な営みに役立てるため、あるいは人間の探求心を満たすために、宇宙に各種機器を送り出したり、さらには人間自身が宇宙に出て行くための活動全般をいう。.

新しい!!: アルファ磁気分光器と宇宙開発 · 続きを見る »

宇宙望遠鏡の一覧

次に挙げるのは観測する電磁波の波長ごとに分けて分類した宇宙望遠鏡の一覧である。 ガンマ線、X線、紫外線、可視光線、赤外線、マイクロ波、電波に分けてある。複数の領域にまたがる能力を持つ望遠鏡は両方に掲載した。陽子や電子などの宇宙線、重力波観測用の望遠鏡も挙げてある。ただし宇宙探査機については宇宙探査機の一覧で取り扱うためここでは取り扱わない。 「軌道」の欄は、地球を周回している宇宙望遠鏡については近地点・遠地点の距離 を記した。リサージュ軌道を周っている宇宙望遠鏡についてはラグランジュ点位置を記した。.

新しい!!: アルファ磁気分光器と宇宙望遠鏡の一覧 · 続きを見る »

常伝導

常伝導(じょうでんどう)とは、導体が超伝導になっていない状態(常伝導状態)、または、超伝導現象を起こさない導体(常伝導体)のことである。超伝導物質の中の不純物や超伝導になりきれていない部分は常伝導相と呼ばれる。電気抵抗ゼロの物質である超伝導体が発見されてから出来た言葉であり、超伝導とは対の意味で使われる。.

新しい!!: アルファ磁気分光器と常伝導 · 続きを見る »

人工衛星の軌道

人工衛星の軌道(じんこうえいせいのきどう)では、個々の利用目的にあわせた軌道に投入される人工衛星の、軌道の種類や性質や、衛星の位置を知る方法を示す。.

新しい!!: アルファ磁気分光器と人工衛星の軌道 · 続きを見る »

低軌道

低軌道 (ていきどう、英語: low orbit) は、人工衛星などの物体のとる衛星軌道のうち、中軌道よりも高度が低いもの。 地球を回る低軌道を地球低軌道 (low Earth orbit、LEO) と言う。LEOは、地球表面からの高度2,000km以下を差し、これに対し、中軌道(MEO)は2,000 kmから36,000 km未満、静止軌道(GEO)は36 000 km前後である。地球低軌道衛星は、約27400 km/h(約8 km/s)で飛行し、1回の周回に約1.5時間を要する(高度約350 kmの例)。 大気のある天体では、低軌道より低い軌道は安定せず、大気の抵抗で急激に高度を下げ、やがては大気中で燃え尽きてしまう。 低軌道は、地球に接近しているという点で、次のような利点がある。.

新しい!!: アルファ磁気分光器と低軌道 · 続きを見る »

ミール

ミール(Мир)は、ソビエト連邦によって1986年2月19日に打ち上げられ、2001年3月23日まで使われた宇宙ステーションである。ミールという名前は、ロシア語で「平和」「世界」を意味する。サリュートの後継機。.

新しい!!: アルファ磁気分光器とミール · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: アルファ磁気分光器とマサチューセッツ工科大学 · 続きを見る »

チャームクォーク

チャームクォーク(charm quark、記号:c)は、物質を構成する主要な素粒子の一つで、第二世代のクォークである。.

新しい!!: アルファ磁気分光器とチャームクォーク · 続きを見る »

チェレンコフ放射

チェレンコフ放射(チェレンコフほうしゃ、Čerenkov radiation)とは、荷電粒子が物質中を運動する時、荷電粒子の速度がその物質中の光速度よりも速い場合に光が出る現象。チェレンコフ効果ともいう。このとき出る光をチェレンコフ光、または、チェレンコフ放射光と言う。 この現象は、1934年にパーヴェル・チェレンコフにより発見され、チェレンコフ放射と名付けられた。その後、イリヤ・フランクとイゴール・タムにより、その発生原理が解明された。これらの功績により、この3名は1958年のノーベル物理学賞を受けた。.

新しい!!: アルファ磁気分光器とチェレンコフ放射 · 続きを見る »

チタン

二酸化チタン粉末(最も広く使用されているチタン化合物) チタン製指輪 (酸化皮膜技術で色彩を制御) チタン(Titan 、titanium 、titanium)は、原子番号22の元素。元素記号は Ti。第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。 地球を構成する地殻の成分として9番目に多い元素(金属としてはアルミニウム、鉄、マグネシウムに次ぐ4番目)で、遷移元素としては鉄に次ぐ。普通に見られる造岩鉱物であるルチルやチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近(1950年代)である。 チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。この性質が金属チタンの貴金属に匹敵する耐食性や安定性をもたらしている。(水溶液中の実際的安定順位は、ロジウム、ニオブ、タンタル、金、イリジウム、白金に次ぐ7番目。銀、銅より優れる) 貴金属が元素番号第5周期以降に所属する重金属である一方でチタンのみが第4周期に属する軽い金属である(鋼鉄の半分)。.

新しい!!: アルファ磁気分光器とチタン · 続きを見る »

バラク・オバマ

バラク・フセイン・オバマ2世( 、1961年8月4日 - )は、アメリカ合衆国の政治家である。民主党所属。上院議員(1期)、イリノイ州上院議員(3期)、第44代アメリカ合衆国大統領を歴任した。 アフリカ系アフリカ系黒人とヨーロッパ系白人との混血=ムラートとしてアメリカ合衆国史上3人目となる民選上院議員(イリノイ州選出、2005年 - 2008年2008年アメリカ大統領選挙で当選後上院議員を辞任。)。また、アフリカ系、20世紀後半生まれ、ハワイ州出身者としてアメリカ合衆国史上初となる大統領である。 身長6フィート1インチ(約185.4cm)。2009年10月に現職アメリカ合衆国大統領としてノーベル平和賞を受賞する。.

新しい!!: アルファ磁気分光器とバラク・オバマ · 続きを見る »

メガビット

メガビット (megabit) はデータの量の単位の一つで、Mビット (Mbit)、あるいは Mb とも略記される("M" は大文字、"b" は小文字)。 1 メガビットは 100,000,000ビットに等しい(ただし、後述するように場合によって異なる)。 メガビットがよく使われるのは、データの転送速度や処理速度を表す場合で、たとえば「100 Mbit/s Fast イーサネット」のように使われる。ADSLなどの一般家庭向け高速インターネット接続の速度はメガビット単位で表現されることが多い。電気通信分野では、メガ (M) はほぼ例外なく10進接頭辞(SI接頭辞)で、 1 メガビットは 106.

新しい!!: アルファ磁気分光器とメガビット · 続きを見る »

レスールスDK1

レスールスDK1(Ресурс-ДК1, ラテン文字表記の例: Resurs DK1)とは、2006年にロシアが打ち上げた商用地球観測衛星である。レスールスは「資源(リソース)」を意味しており、レスールスF型は1989年から使われており、その後レスールス01型、F-1M型などが使われており、レスールスDK1は一番新しいタイプであったが、2013年6月28日に、次世代のレスールスP型が打ち上げられた。.

新しい!!: アルファ磁気分光器とレスールスDK1 · 続きを見る »

ロボットアーム

ボットアーム(Robotic arm).

新しい!!: アルファ磁気分光器とロボットアーム · 続きを見る »

ワット

ワット(watt, 記号: W)とは仕事率や電力、工率、放射束、をあらわすSIの単位(SI組立単位)であるJIS Z 8203:2000 国際単位系 (SI) 及びその使い方。.

新しい!!: アルファ磁気分光器とワット · 続きを見る »

ボトムクォーク

ボトムクォークは、 (bottom quark, 記号:b) は、素粒子標準模型における第三世代のクォークである。.

新しい!!: アルファ磁気分光器とボトムクォーク · 続きを見る »

トラス (ISS)

トラス(truss)とは、国際宇宙ステーション (ISS) の背骨にあたる基幹構造で、非与圧の物資、ラジエータ、太陽電池パドル(Solar Array Wing:SAW)、その他の機器が取り付けられている。 初期の宇宙ステーション「フリーダム計画」では、さまざまなトラスのデザインが考えられたが、それらは全て、打ち上げ後に宇宙飛行士が船外活動で組み立て・機器の取り付けを行なう桁として計画されていた。1991年にNASAは設計を見直して、最低限の取り付けで済むように、あらかじめ組み立て済みのより短い部材へと変更された。.

新しい!!: アルファ磁気分光器とトラス (ISS) · 続きを見る »

トップクォーク

トップクォーク(top quark、記号:t)は、素粒子標準模型における第三世代のクォークである。.

新しい!!: アルファ磁気分光器とトップクォーク · 続きを見る »

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

新しい!!: アルファ磁気分光器とヘリウム · 続きを見る »

ヒューストン

ヒューストン(Houston)は、アメリカ合衆国テキサス州南東部に位置する都市。2,099,451人(2010年国勢調査)の人口を抱えるテキサス州最大、全米第4の都市である.

新しい!!: アルファ磁気分光器とヒューストン · 続きを見る »

ビーム (物理学)

ビーム (beam) は、粒子の集団や、粒子のように振舞う波長の短い波が、細い流れとなって並進し、互いにはほとんど衝突しないものである。 粒子や波の名前や種類を冠し「〜ビーム」という。「〜線」と訳すこともあるが、ビームとは限らない単なる放射線 (ray) の意味にも取れ曖昧なこともある。たとえば、「アルファ線」「ベータ線」「X線」「光線」等の「線」は放射線の意味である。.

新しい!!: アルファ磁気分光器とビーム (物理学) · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: アルファ磁気分光器とビッグバン · 続きを見る »

テキサス州

テキサス州(State of Texas)は、アメリカ合衆国の州のひとつ。略称はTX。合衆国本土南部にあり、メキシコと国境を接している。.

新しい!!: アルファ磁気分光器とテキサス州 · 続きを見る »

テスラ (単位)

テスラ(tesla、記号: T)は、磁束密度の単位である。 その名称はニコラ・テスラにちなむ。1960年の国際単位系 (SI) 導入の際、それまでのCGS単位系に基づくガウスをSIに基づくものに置き換えるために定められた。.

新しい!!: アルファ磁気分光器とテスラ (単位) · 続きを見る »

ディスカバリー (オービタ)

ディスカバリー(Space Shuttle Discovery、NASA型名:OV-103)はスペースシャトルのオービタである。コロンビア、チャレンジャーに続いて、1984年8月30日に打ち上げられた3機目のオービタである。.

新しい!!: アルファ磁気分光器とディスカバリー (オービタ) · 続きを見る »

フロリダ州

フロリダ州(State of Florida )は、アメリカ合衆国東南部の州である。メキシコ湾と大西洋に挟まれるフロリダ半島の全域を占め、北はジョージア州とアラバマ州に接しており、サンベルトと呼ばれる比較的気候が温暖な州の1つである。 フロリダ州の面積は170,306 km2 (65,758 mi2) で、50州の中で22位であるが、海岸線の長さは約1,900 km (1,200 マイル) あり、大陸48州の中では最長である。 フロリダ州は北部と中部が亜熱帯、南部は熱帯に属して概して暖かいので、「サンシャインステート(日光の州)」という渾名がある。2009年の推計人口は18,537,969人となっており、全米50州の中で第4位である。州都はタラハシー (Tallahassee) 、人口最大の都市はジャクソンビル (Jacksonville)、その他主な都市としてはマイアミ (Miami)、タンパ (Tampa)、オーランド (Orlando)などがあり、マイアミ都市圏は人口500万人以上を抱える州内最大の都市圏になっている。 ケネディ宇宙センター、スペースポート・フロリダ、ウォルト・ディズニー・ワールド・リゾート、ユニバーサル・オーランド・リゾート、シー・ワールド・オブ・フロリダなどがあることで有名で、アメリカでも有数の観光地として知られている。.

新しい!!: アルファ磁気分光器とフロリダ州 · 続きを見る »

ドル

ドル(dollar)は通貨単位のひとつであり、複数の国で使用されている。記号は$。漢字では、字体の似た「弗」を宛てる。.

新しい!!: アルファ磁気分光器とドル · 続きを見る »

ニューヨーク・タイムズ

ニューヨーク・タイムズ(The New York Times)は、アメリカ合衆国ニューヨーク州ニューヨーク市に本社を置く、新聞社並びに同社が発行している高級日刊新聞紙。アメリカ合衆国内での発行部数はUSAトゥデイ(211万部)、ウォール・ストリート・ジャーナル(208万部)に次いで第3位(103万部)部数は平日版、2008年10月 - 2009年3月平均。.

新しい!!: アルファ磁気分光器とニューヨーク・タイムズ · 続きを見る »

ニュートラリーノ

ニュートラリーノ (neutralino) は、超対称性理論によって存在が予想されているマヨラナ粒子。予測される質量は陽子の質量の30~5000倍。 超対称性理論は全てのフェルミ粒子にはボース粒子の超対称パートナーが、また全てのボース粒子にはフェルミ粒子の超対称パートナーが存在するはずだとしている。電荷を持たないボース粒子に対する超対称パートナーであるズィーノ(Z粒子のパートナー)、フォティーノ(光子のパートナー)、中性ヒグシーノ(中性ヒッグス粒子のパートナー)は同じ量子数を持つので混合状態を作り、これがニュートラリーノと呼ばれるフェルミ粒子である。一方、電荷をもつボース粒子のパートナーはチャージーノと呼ばれるフェルミ粒子を作る。 ニュートラリーノは、弱い相互作用と重力相互作用にのみ関わるので,存在したとしても観測は困難である。また、最も軽いニュートラリーノは安定な粒子であると考えられる。 なお、もしも超対称性理論が実際に成立しているとすれば、標準模型における各素粒子に対応する超対称パートナー粒子が存在して追加されるので素粒子の種類は倍となるはずであるが、現在までのところ実験では超対称粒子はひとつも発見されていない。 検討中のWIMPでは、最も軽い電気的に中性な超対称性粒子であるニュートラリーノが冷たい暗黒物質(ダークマター)の最有力候補と言われている。 ニュートラリーノの詳細な性質は、それを構成する成分(ズィーノ、フォティーノ、中性ヒッグシーノ)の混合比率に依存する。 Category:統一場理論 Category:素粒子 Category:超対称性粒子 Category:暗黒物質.

新しい!!: アルファ磁気分光器とニュートラリーノ · 続きを見る »

ニオブ

ニオブ(niobium Niob )は原子番号41の元素。元素記号は Nb。バナジウム族元素の1つ。.

新しい!!: アルファ磁気分光器とニオブ · 続きを見る »

ダークエネルギー

ダークエネルギー(ダークエナジー、暗黒エネルギー、dark energy)とは、現代宇宙論および天文学において、宇宙全体に浸透し、宇宙の拡張を加速していると考えられる仮説上のエネルギーである。2013年までに発表されたプランクの観測結果からは、宇宙の質量とエネルギーに占める割合は、原子等の通常の物質が4.9%、暗黒物質(ダークマター)が26.8%、ダークエネルギーが68.3%と算定されている。.

新しい!!: アルファ磁気分光器とダークエネルギー · 続きを見る »

ダウンクォーク

ダウンクォーク (down quark, 記号:d) は、物質を構成する主要な素粒子の一つで、第一世代のクォークである。.

新しい!!: アルファ磁気分光器とダウンクォーク · 続きを見る »

アメリカ合衆国大統領

アメリカ合衆国大統領(アメリカがっしゅうこくだいとうりょう、, 略:"POTUS")は、アメリカ合衆国の国家元首であり行政府の長である。現職は2017年1月20日より第45代ドナルド・トランプが在任。 アメリカ合衆国大統領選挙(以下「大統領選挙」)によって選出される。.

新しい!!: アルファ磁気分光器とアメリカ合衆国大統領 · 続きを見る »

アメリカ合衆国上院

アメリカ合衆国上院(アメリカがっしゅうこくじょういん、)は、アメリカ合衆国議会を構成する二院アメリカ合衆国憲法 第1条及び修正第17条のうち、上院にあたる議院である。 古代ローマの (元老院)が語源である。 を直訳した場合は合衆国元老院(がっしゅうこくげんろういん)となるが、日本語では通常上院(じょういん)と記される。.

新しい!!: アルファ磁気分光器とアメリカ合衆国上院 · 続きを見る »

アメリカ合衆国下院

アメリカ合衆国下院(アメリカがっしゅうこくかいん、英:United States House of Representatives、略称:the House)は、アメリカ合衆国議会の二院アメリカ合衆国憲法 第1条及び修正第14条のうち下院にあたる議院である。議席数は435で、各州に対して人口比率に応じて配分される。 正式名称を日本語に直訳すると合衆国代議院となるが、通常は下院の呼称が用いられる。.

新しい!!: アルファ磁気分光器とアメリカ合衆国下院 · 続きを見る »

アメリカ合衆国エネルギー省

アメリカ合衆国エネルギー省(アメリカがっしゅうこくエネルギーしょう、United States Department of Energy、略称:DOE)は、アメリカ合衆国のエネルギー保障と核安全保障を担当する官庁である。その役割は核兵器の製造と管理、原子力技術の開発、エネルギー源の安定確保、及びこれらに関連した先端技術の開発と多岐にわたる。.

新しい!!: アルファ磁気分光器とアメリカ合衆国エネルギー省 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: アルファ磁気分光器とアメリカ航空宇宙局 · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: アルファ磁気分光器とイタリア · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: アルファ磁気分光器とエネルギー · 続きを見る »

エンデバー (オービタ)

接近する''エンデバー''を国際宇宙ステーションから撮影(STS-118) thumb エンデバー(Endeavour, OV-105)は、スペースシャトルのオービタ。チャレンジャーの事故による機数減少を受けて「エンタープライズを改修するよりも安い」との判断の元、ストックされていたスペアパーツを用い製造された機体である。初飛行は1992年5月7日のSTS-49。2011年6月の引退までに25回の飛行を行った。 (エンデバー)の名前は、キャプテン・クックの南太平洋探検の第1回航海の帆船 (エンデバー号)に由来している。なお、努力という意味はそれぞれ、となるが、本船は固有名詞であるクックの船名に由来するが正しい。2007年7月には、NASA自身が作成した射点の横断幕でEndeavorと書いてしまうミスがあり、米国では話題になった。1971年に打ち上げられたアポロ15号の司令船の名称もエンデバー(Endeavour)である。 フィクションではアーサー・C・クラークのSF小説「宇宙のランデヴー」の主役宇宙船の名称もエンデバーだった。2001年宇宙の旅の主役宇宙船ディスカバリーと共にクラークの著書に登場する宇宙船と同じ名前のオービタである。 退役後はロサンゼルスのカリフォルニア科学センターに展示されている。.

新しい!!: アルファ磁気分光器とエンデバー (オービタ) · 続きを見る »

オランダ

ランダ(Nederland 、; Nederlân; Hulanda)は、西ヨーロッパに位置する立憲君主制国家。東はドイツ、南はベルギーおよびルクセンブルクと国境を接し、北と西は北海に面する。ベルギー、ルクセンブルクと合わせてベネルクスと呼ばれる。憲法上の首都はアムステルダム(事実上の首都はデン・ハーグ)。 カリブ海のアルバ、キュラソー、シント・マールテンと共にオランダ王国を構成している。他、カリブ海に海外特別自治領としてボネール島、シント・ユースタティウス島、サバ島(BES諸島)がある。.

新しい!!: アルファ磁気分光器とオランダ · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: アルファ磁気分光器とガンマ線 · 続きを見る »

ギガビット

ビット (gigabit) は情報や記憶装置の単位であり、Gbit または Gb と略記される。.

新しい!!: アルファ磁気分光器とギガビット · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: アルファ磁気分光器とクォーク · 続きを見る »

ケネディ宇宙センター

ョン・F・ケネディ宇宙センター(ジョン・F・ケネディうちゅうセンター、John F. Kennedy Space Center, KSC)は、アメリカ合衆国フロリダ州ブレバード郡メリット島にある、アメリカ航空宇宙局 (NASA) のフィールドセンターの一つで、有人宇宙船発射場、打ち上げ管制施設及びペイロード整備系から構成される中核的研究拠点。フロリダ州の東海岸に位置しており、ケープカナベラル空軍基地 (CCAFS) の隣にある。.

新しい!!: アルファ磁気分光器とケネディ宇宙センター · 続きを見る »

ケネディ宇宙センター第39発射施設

ネディ宇宙センター第39発射施設(ケネディうちゅうセンターだい39はっしゃしせつ、Launch Complex 39、略称: LC-39)は、アメリカ合衆国フロリダ州メリット島にあるケネディ宇宙センター内のロケット発射場である。発射場および施設群は元々アポロ計画のために建設され、後にスペースシャトル計画のために改修された。2017年現在、運用中なのは39A発射台 (LC-39A) のみで、スペースX社のファルコン9とファルコンヘビーの打ち上げに使用されている。39B発射台 (LC-39B) はNASAのスペース・ローンチ・システム (SLS) の打ち上げに向けて改修中である。新しく、小さな39C発射台 (LC-39C) は2015年に完成し、小規模な打ち上げに対応するが、まだ使用されていない。 LC-39は、39A、39B、39Cの3基の発射台、およびビークル組立棟 (VAB)、VABと発射台との間でクローラー・トランスポーターがを輸送するために敷かれた運搬路である、オービタ整備施設 (OPF)、制御室 (the firing rooms) が入る、テレビ中継や写真撮影で象徴的に映されるカウントダウン時計で有名なに加え、さまざまな補給拠点や運用支援施設から構成されている。 スペースX社は39A発射台をNASAからリースして改修を施し、2017年以降のファルコン9の打ち上げに対応している。NASAはコンステレーション計画のために2007年から39B発射台の改修を開始していたが、2010年に同計画が中止となったため、現在は2019年12月に最初の打ち上げが予定されているスペース・ローンチ・システム (SLS) での運用に向けて準備中である。C発射台は元々アポロ計画のために建設する計画が挙がっていたが、実現することはなく、(もし建設されていたとしても)39Aと39Bの発射台の複製になっていたであろうとされる。その後、軽量級のロケットの打ち上げに対応できる、より小さな発射台となる39C発射台が2015年1月から6月までの期間に建設された。 NASAによるLC-39AおよびLC-39Bからの打ち上げは、発射台から約離れた場所に位置する打ち上げ管制センター (LCC) から管制が行われてきた。LC-39は、東部射場のレーダー管制および追尾業務を共に担う、数ある発射場のうちの一つである。.

新しい!!: アルファ磁気分光器とケネディ宇宙センター第39発射施設 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: アルファ磁気分光器とケイ素 · 続きを見る »

コロンビア号空中分解事故

ンビア号空中分解事故(コロンビアごうくうちゅうぶんかいじこ)は、2003年2月1日、アメリカ合衆国の宇宙船スペースシャトル「コロンビア号」が大気圏に再突入する際、テキサス州とルイジアナ州の上空で空中分解し、7名の宇宙飛行士が犠牲になった事故である。コロンビアは、その28回目の飛行であるSTS-107を終え、地球に帰還する直前であった。.

新しい!!: アルファ磁気分光器とコロンビア号空中分解事故 · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: アルファ磁気分光器とコイル · 続きを見る »

ジュネーヴ

ュネーヴ(Genève、Geneva)はスイス西部、レマン湖の南西岸に位置する都市(コミューヌ)。フランス語圏に属し、ジュネーヴ州の州都である。.

新しい!!: アルファ磁気分光器とジュネーヴ · 続きを見る »

ジョンソン宇宙センター

リンドン・B・ジョンソン宇宙センター(リンドン・B・ジョンソンうちゅうセンター、Lyndon B. Johnson Space Center, JSC)は、アメリカ合衆国テキサス州ヒューストンにある、アメリカ航空宇宙局 (NASA) の宇宙センターである。 旧称は有人宇宙船センター (Manned Spacecraft Center)。1973年2月19日に、テキサス州出身の元アメリカ合衆国大統領リンドン・B・ジョンソンに敬意を表して、現在の名称に改名された。有人宇宙飛行に関する訓練、研究および飛行管制が行われている。.

新しい!!: アルファ磁気分光器とジョンソン宇宙センター · 続きを見る »

ジョージ・W・ブッシュ

ョージ・ウォーカー・ブッシュ(, 1946年7月6日 - )は、アメリカ合衆国の政治家。第46代テキサス州知事、第43代アメリカ合衆国大統領を歴任。 第41代アメリカ合衆国大統領のジョージ・H・W・ブッシュは父。またフロリダ州知事を務めたジェブ・ブッシュは次弟。ジョージ・P・ブッシュは甥(ジェブ・ブッシュの長男)。.

新しい!!: アルファ磁気分光器とジョージ・W・ブッシュ · 続きを見る »

スペースシャトル

ペースシャトル(Space Shuttle)は、アメリカ航空宇宙局(NASA)が1981年から2011年にかけて135回打ち上げた、再使用をコンセプトに含んだ有人宇宙船である。 もともと「再使用」というコンセプトが強調されていた。しかし、結果として出来上がったシステムでは、オービタ部分は繰り返し使用されたものの、打ち上げられる各部分の全てが再利用できていたわけではなく、打ち上げ時にオービタの底側にある赤色の巨大な外部燃料タンクなどは基本的には使い捨てである。.

新しい!!: アルファ磁気分光器とスペースシャトル · 続きを見る »

ストレンジレット

トレンジレット(Strangelet)とは、ほぼ同数のアップ、ダウン、ストレンジクオークの束縛状態からなる仮説上の粒子をいう。サイズは最小でさしわたし数フェムトメートル(質量の軽い核の場合)。サイズが巨視的なもの(さしわたし数メートル程度)については、ストレンジレットとは呼ばず、クオーク星や「ストレンジ星」と呼ぶことが多い。ストレンジレットはのかけらであると言うこともできる。「ストレンジレット」という用語はE.

新しい!!: アルファ磁気分光器とストレンジレット · 続きを見る »

ストレンジクォーク

トレンジクォーク(strange quark、記号:s)は、物質を構成する主要な素粒子の一つで、第二世代のクォークである。.

新しい!!: アルファ磁気分光器とストレンジクォーク · 続きを見る »

スイス

イス連邦(スイスれんぽう)、通称スイスは中央ヨーロッパにある連邦共和制国家。永世中立国であるが、欧州自由貿易連合に加盟しているほかバチカン市国の衛兵はスイス傭兵が務めている。歴史によって、西欧に分類されることもある。 ドイツ、フランス、イタリア、オーストリア、リヒテンシュタインに囲まれた内陸に位置し、国内には多くの国際機関の本部が置かれている。首都はベルンで、主要都市にチューリッヒ、バーゼル、ジュネーヴ、ローザンヌなど。.

新しい!!: アルファ磁気分光器とスイス · 続きを見る »

サミュエル・ティン

ミュエル・ティン(Samuel C. C. Ting、中国名:丁肇中、1936年1月27日 - )は中国系アメリカ人の研究者。バートン・リヒターと共にジェイプサイ中間子の発見により1976年にノーベル物理学賞を受賞した。.

新しい!!: アルファ磁気分光器とサミュエル・ティン · 続きを見る »

国際宇宙ステーション

CGによる完成予想図。 国際宇宙ステーション(こくさいうちゅうステーション、International Space Station、略称:ISS、Station spatiale internationale、略称:SSI、Междунаро́дная косми́ческая ста́нция、略称:МКС)は、アメリカ合衆国、ロシア、日本、カナダ及び欧州宇宙機関 (ESA) が協力して運用している宇宙ステーションである。地球及び宇宙の観測、宇宙環境を利用した様々な研究や実験を行うための巨大な有人施設である。地上から約400km上空の熱圏を秒速約7.7km(時速約27,700km)で地球の赤道に対して51.6度の角度で飛行し、地球を約90分で1周、1日で約16周する。なお、施設内の時刻は、協定世界時に合わせている。 1999年から軌道上での組立が開始され、2011年7月に完成した。当初の運用期間は2016年までの予定であったが、アメリカ、ロシア、カナダ、日本は少なくとも2024年までは運用を継続する方針を発表もしくは決定している。運用終了までに要する費用は1540億USドルと見積もられている(詳細は費用を参照)。.

新しい!!: アルファ磁気分光器と国際宇宙ステーション · 続きを見る »

国際宇宙ステーション組立順序

国際宇宙ステーション組立順序(こくさいうちゅうステーションくみたてじゅんじょ)では、国際宇宙ステーション (ISS) の建設における組立順序を記述する。 シャトル退役以降の2016年現在は、有人輸送手段としてはロシアのソユーズ宇宙船のみが運用されている。また物資輸送手段としてロシアのプログレス補給船が主に使用され、2009年からは日本の宇宙ステーション補給機 (HTV) が、2012年からは米民間企業のスペースX社のドラゴンが、2013年からはオービタル・サイエンシズ社のシグナスが使用されている。2011年にアメリカのスペースシャトルが退役するまでは、有人/物資輸送の両面において主要な輸送手段として用いられていた。2008年から2015年にかけては、物資輸送手段としてヨーロッパの欧州補給機 (ATV) も用いられた。 2008年にヨーロッパ宇宙機関 (ESA) がATV1号機を打ち上げた。このATVは宇宙ステーションのリブースト(高度上昇-再加速)が可能であり、それまでロシア側が10年近く担当していたが、ヨーロッパのATVがその一部を肩代りするようになった。ATVは2015年初めにATV-5が最後のミッションを終え退役した。 2009年に日本の宇宙航空研究開発機構 (JAXA) がHTV1号機「こうのとり」を打ち上げた。2012年には米民間企業のスペースX社が、アメリカ航空宇宙局 (NASA) との契約に基づきドラゴンを打ち上げた。また、2013年からはオービタル・サイエンシズ社のシグナスも参入し、スペースシャトル退役後は、大型物資の輸送はHTVとドラゴンとシグナスによって行われている。.

新しい!!: アルファ磁気分光器と国際宇宙ステーション組立順序 · 続きを見る »

CP対称性の破れ

CP対称性の破れとは、物理学、特に素粒子物理学において、CP対称性に従わない事象のことである。 CP対称性の破れは1964年に中性K中間子の崩壊の観測から発見され、ジェイムズ・クローニンとヴァル・フィッチはその功績により1980年にノーベル物理学賞を受賞した。現在も、理論物理及び実験物理で積極的な研究が行なわれている分野の一つとなっている。 現在の宇宙では、物質が反物質よりもはるかに多い。 宇宙の歴史の中でこの非対称性を生成するためにはCP対称性の破れが必要条件であり、 サハロフの三条件のひとつとして知られている。.

新しい!!: アルファ磁気分光器とCP対称性の破れ · 続きを見る »

火星

火星(かせい、ラテン語: Mars マールス、英語: マーズ、ギリシア語: アレース)は、太陽系の太陽に近い方から4番目の惑星である。地球型惑星に分類され、地球の外側の軌道を公転している。 英語圏では、その表面の色から、Red Planet(レッド・プラネット、「赤い惑星」の意)という通称がある。.

新しい!!: アルファ磁気分光器と火星 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: アルファ磁気分光器と磁場 · 続きを見る »

磁石

磁石(じしゃく、、マグネット)は、二つの極(磁極)を持ち、双極性の磁場を発生させる源となる物体のこと。鉄などの強磁性体を引き寄せる性質を持つ。磁石同士を近づけると、異なる極は引き合い、同じ極は反発しあう。.

新しい!!: アルファ磁気分光器と磁石 · 続きを見る »

磁束密度

磁束密度(じそくみつど、)とは、文字通り磁束の単位面積当たりの面密度のことであるが、単に磁場と呼ばれることも多い。磁束密度はベクトル量である。 記号 B で表されることが多い。国際単位系 (SI)ではテスラ (T)、もしくはウェーバ毎平方メートル (Wb/m2)である。.

新しい!!: アルファ磁気分光器と磁束密度 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: アルファ磁気分光器と粒子 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: アルファ磁気分光器と素粒子 · 続きを見る »

素粒子物理学

素粒子物理学(そりゅうしぶつりがく、particle physics)は、物質の最も基本的な構成要素(素粒子)とその運動法則を研究対象とする物理学の一分野である。 大別して素粒子論(素粒子理論)と素粒子実験からなる。また実証主義、還元主義に則って実験的に素粒子を研究する体系を高エネルギー物理学と呼ぶ。 粒子加速器を用い、高エネルギー粒子の衝突反応を観測することで、主に研究が進められることから、そう命名された。しかしながら、現在、実験で必要とされる衝突エネルギーはテラ電子ボルトの領域となり、加速器の規模が非常に大きくなってきている。将来的に建設が検討されている国際リニアコライダーも建設費用は一兆円程度になることが予想されている。また、近年においても、伝統的に非加速器による素粒子物理学の実験的研究が模索されている。 何をもって素粒子とするのかは時代とともに変化してきており、立場によっても違い得るが標準理論の枠組みにおいては、物質粒子として6種類のクォークと6種類のレプトン、力を媒介する粒子としてグルーオン、光子、ウィークボソン、重力子(グラビトン)、さらにヒッグス粒子等が素粒子だと考えられている。超弦理論においては素粒子はすべて弦(ひもともいう)の振動として扱われる。.

新しい!!: アルファ磁気分光器と素粒子物理学 · 続きを見る »

真空

真空(しんくう、英語:vacuum)は、物理学の概念で、圧力が大気圧より低い空間状態のこと。意味的には、古典論と量子論で大きく異なる。.

新しい!!: アルファ磁気分光器と真空 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: アルファ磁気分光器と熱力学温度 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: アルファ磁気分光器と物理学 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: アルファ磁気分光器と物質 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

新しい!!: アルファ磁気分光器と銀河 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: アルファ磁気分光器と銀河系 · 続きを見る »

荷電粒子

荷電粒子(かでんりゅうし)とは、電荷を帯びた粒子のこと。通常は、イオン化した原子や、電荷を持った素粒子のことである。 核崩壊によって生じるアルファ線(ヘリウムの原子核)やベータ線(電子)は、荷電粒子から成る放射線である。質量の小さな粒子が電荷を帯びると、電場によって正と負の電荷が引き合ったり、反対に正と正、負と負が反発しあったりするクーロン力を受けたり、また磁場中でこういった粒子が運動することで進行方向とは直角方向に生じる力を受けたりする。これら2つの力をまとめてローレンツ力というが、磁場によって生じる力のほうが大きい場合には電界による力を無視して、磁場の力だけをローレンツ力と言うことがある。これはローレンツ力の定義式にある電界の項をゼロとおき(電界の影響が小さいため無視する)、磁場の影響だけを計算した結果で、近似である。詳しくはローレンツ力を参照。.

新しい!!: アルファ磁気分光器と荷電粒子 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: アルファ磁気分光器と質量 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: アルファ磁気分光器と超伝導 · 続きを見る »

超伝導超大型加速器

超伝導超大型加速器(Superconducting Super Collider、SSC)は、1980年代に計画され、アメリカ合衆国のテキサス州ワクサハチー (Waxahachie) の地下に建造される予定であった超大型円形粒子加速器である。しかし、様々な問題が噴出して計画は頓挫した。 リング周長は約86.6km(54マイル)という空前の規模であり、円周の内部面積は東京23区に匹敵する。20TeVのビームを正面衝突させて40TeVの超高エネルギーを達成する世界最大の粒子加速器で、建造目的の一つとしてヒッグス粒子の発見が期待されていた。 宇宙ステーション・ヒトゲノム計画と並ぶ巨大科学プロジェクトとして位置づけられ、建造費は当初の見積もりで50-60億ドル、最終的には80億ドル以上に達した。建設にあたっては全米の20州以上が熱心な誘致合戦を繰り広げ、1989年にテキサス州のワクサハチーが選定された。この地はダラス・フォートワース国際空港が近郊にあり、チョーク層の地質で加速器本体を埋めるトンネルを掘りやすいという有利な立地条件にあったのと、テキサス州が最大10億ドルもの資金援助を申し出たことによる。 しかし、当初計画の見直しにより経費が大幅に膨れ上がり、資金不足に陥って日本からの資金調達にも失敗した。その他、行政機構と物理学者の内部対立や、超伝導磁石の大量製造の困難など様々なトラブルを抱え込んで、批判が続出した。1992-93年にかけて議会で計画中止案が出され、クリントン政権下で可決された。 プロジェクトが中止された時点で、既に建造費の20億ドルが費やされ、トンネルは22.5km(14マイル)が掘り進められていた。.

新しい!!: アルファ磁気分光器と超伝導超大型加速器 · 続きを見る »

軌道傾斜角

軌道傾斜角(きどうけいしゃかく、英語:inclination)とは、ある天体の周りを軌道運動する天体について、その軌道面と基準面とのなす角度を指す。通常は記号 iで表す。 我々の太陽系の惑星や彗星・小惑星などの場合には、基準面は主星である天体、太陽の自転軸に垂直な平面つまり太陽の赤道面である。衛星の場合には基準面として主星の赤道面を採る場合と主星の軌道面を採る場合がある。人工衛星の場合には主星である地球の赤道面を基準とするのが普通である(人工衛星の軌道要素を参照)。 軌道傾斜角 iは0°≦i≦180°の範囲の値をとる。i.

新しい!!: アルファ磁気分光器と軌道傾斜角 · 続きを見る »

近点・遠点

近地点と遠地点の位置関係 近点・遠点(きんてん・えんてん、periapsis and apoapsis) とは、軌道運動する天体が、中心天体の重力中心に最も近づく位置と、最も遠ざかる位置のことである。両者を総称して軌道極点またはアプシス(apsis) と言う。 特に、中心天体が太陽のときは近日点・遠日点(きんじつてん・えんじつてん、perihelion and aphelion )、主星が地球のときは近地点・遠地点(きんちてん・えんちてん、perigee and apogee )、連星系では近星点・遠星点(きんせいてん・えんせいてん、periastron and apastron)と言う。地球を周回する人工衛星については英単語のままペリジー・アポジーとも言う。主星が惑星の場合、例えば木星の衛星や木星を周回する探査機(ジュノーなど)の軌道の木星に対する近点・遠点は近木点・遠木点(きんもくてん・えんもくてん、perijove and apojove)、土星ならば近土点・遠土点(きんどてん・えんどてん、perichron and apochron)と表現することもある。 中心天体の周りを周回する天体は楕円軌道を取るが、中心天体は楕円の中心ではなく、楕円の長軸上にふたつ存在する焦点のいずれかに位置する。このため周回する天体は中心天体に対して、最も接近する位置(近点)と最も遠ざかる位置(遠点)を持つことになる。遠点・近点および中心天体の重力中心は一直線をなし、この直線は楕円の長軸に一致する。 中心天体の重力中心から近点までの距離を近点距離(近日点距離、近地点距離)、遠点までの距離を遠点距離(遠日点距離、遠地点距離)といい、それぞれ軌道要素の1つである。軌道長半径、離心率、近点距離、遠点距離の4つの軌道要素のうち2つを指定すれば、軌道の2次元的な形状が決まる。通常、軌道長半径と離心率が使われるが、放物線軌道・双曲線軌道(特に、彗星の軌道)については通常の意味での軌道長半径を定義できないので、近点距離と離心率が使われる。なお、人工衛星については近地点高度・遠地点高度という言葉もあるが、これらは地球の海面(ジオイド)からの距離である。 他の天体による摂動、一般相対論的効果により、近点は(したがって遠点も)少しずつ移動することがある。これを近点移動(近日点移動、近地点移動)という。.

新しい!!: アルファ磁気分光器と近点・遠点 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: アルファ磁気分光器と鉄 · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

新しい!!: アルファ磁気分光器と電力 · 続きを見る »

電磁両立性

電磁両立性(electromagnetic compatibility、EMC)とは、電気・電子機器について、それらから発する電磁妨害波がほかのどのような機器、システムに対しても影響を与えず、またほかの機器、システムからの電磁妨害を受けても自身も満足に動作する耐性である。電磁共存性、電磁的両立性、電磁環境両立性または電磁(環境)適合性とも呼ばれる。.

新しい!!: アルファ磁気分光器と電磁両立性 · 続きを見る »

電波障害

電波障害(でんぱしょうがい、electromagnetic interference、EMI)とは、電波の受信に障害が発生したり、電波により電子機器が誤動作することである。.

新しい!!: アルファ磁気分光器と電波障害 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

新しい!!: アルファ磁気分光器と陽電子 · 続きを見る »

STS-134

STS-134は、2011年5月に打ち上げられたスペースシャトル エンデバーによる国際宇宙ステーション(ISS)利用補給ミッション(ULF6)である。本飛行がエンデバーの最後の飛行となった。.

新しい!!: アルファ磁気分光器とSTS-134 · 続きを見る »

暗黒物質

暗黒物質(あんこくぶっしつ、dark matter ダークマター)とは、天文学的現象を説明するために考えだされた「質量は持つが、光学的に直接観測できない」とされる、仮説上の物質である。"銀河系内に遍く存在する"、"物質とはほとんど相互作用しない"などといった想定がされており、間接的にその存在を示唆する観測事実は増えているものの、その正体は未だ不明である。.

新しい!!: アルファ磁気分光器と暗黒物質 · 続きを見る »

核子

核子(かくし、nucleon)は、原子核を構成する陽子と中性子の総称。原子の原子核は陽子と中性子により構成されていることにより、これらを総称して核子と呼ぶ。陽子も中性子もバリオンの一種であるため、核子もまたバリオンの一種である。 核子はダウンクォーク(d)とアップクォーク(u)により構成される(中性子は2個のdと1個のu、陽子は1個のdと2個のu)。これに対し、ストレンジという重いクォークを含んだ重いバリオンをハイペロンと呼び、Λ(アイソスピン0、uds), Σ(アイソスピン1、uus, uds, dds), Ξ(アイソスピン1/2、uss, dss), Ω(アイソスピン0, sss)と呼ばれる。また、原子核を構成する粒子にハイペロンを含んだ核をハイパー核と呼ぶ。.

新しい!!: アルファ磁気分光器と核子 · 続きを見る »

欧州原子核研究機構

欧州原子核研究機構(おうしゅうげんしかくけんきゅうきこう、) は、スイスのジュネーヴ郊外でフランスと国境地帯にある、世界最大規模の素粒子物理学の研究所である。.

新しい!!: アルファ磁気分光器と欧州原子核研究機構 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: アルファ磁気分光器と欧州宇宙機関 · 続きを見る »

気球

気球(ききゅう)とは、空気より軽い気体を風船に詰め込む事で浮力を得る物のこと。飛行船と異なり推進装置を持たないが、高度の調整(上昇・下降)により人間や観測装置などを空中に送った後で地表に帰還させたり、物体を遠方に落下させたりできる。 航空機としての分類としては、軽航空機(LTA; Lighter-Than-Air)に分類される。.

新しい!!: アルファ磁気分光器と気球 · 続きを見る »

有人宇宙飛行

ェミニ4号でアメリカ人初の宇宙遊泳(船外活動)を行った。(1965年) 有人宇宙飛行(ゆうじんうちゅうひこう)とは、宇宙船に人が乗り、宇宙を飛行することである。宇宙飛行を行うために特に訓練された者を宇宙飛行士と呼び、そうでない者が宇宙飛行を行う場合、特に宇宙旅行と呼ぶ。 宇宙ロケットに人間が乗り込むことには、依然安全上の大きなリスクがあり、実際に宇宙開発においては、惑星探査などその多くをロボットが担っているが、人間が行わなくてはならない活動も少なくない。宇宙船内での高度な実験、宇宙ステーションの建設などを行うことは、すなわち宇宙開発の主導権を握ることを意味する。現在建設中の国際宇宙ステーションでは有人飛行実績の高いロシアとアメリカが、主導的な立場を担っている。 有人宇宙飛行に成功しているのはロシア連邦(1961年4月 当時はソビエト連邦)、アメリカ合衆国(1961年5月)、中華人民共和国(2003年10月)の3か国となっている。.

新しい!!: アルファ磁気分光器と有人宇宙飛行 · 続きを見る »

流束

流束(りゅうそく、flux)とは、流れの場、あるいはベクトル場の強さを表す量である。 英語のままフラックスとも呼ばれる。 様々なベクトル場に対応した流束が用いられる。流束は流体の理論からの類推であるが、何らかの実体が流れているとは限らない。 なお、面積あたりの流束である流束密度()を指して単に流束と呼ばれることも多い。.

新しい!!: アルファ磁気分光器と流束 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: アルファ磁気分光器と放射線 · 続きを見る »

感度

感度(かんど)とは統計的な概念の一つ。分野によって定義が異なっているが、概ね「ある対象に与えた刺激とそれに対する応答の関係」に関わる指標である。.

新しい!!: アルファ磁気分光器と感度 · 続きを見る »

10月15日

10月15日(じゅうがつじゅうごにち)は、グレゴリオ暦で年始から288日目(閏年では289日目)にあたり、年末まであと77日ある。.

新しい!!: アルファ磁気分光器と10月15日 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: アルファ磁気分光器と1995年 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: アルファ磁気分光器と1998年 · 続きを見る »

1999年

1990年代最後の年であり、1000の位が1になる最後の年でもある。 この項目では、国際的な視点に基づいた1999年について記載する。.

新しい!!: アルファ磁気分光器と1999年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: アルファ磁気分光器と2003年 · 続きを見る »

2005年

この項目では、国際的な視点に基づいた2005年について記載する。.

新しい!!: アルファ磁気分光器と2005年 · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

新しい!!: アルファ磁気分光器と2006年 · 続きを見る »

2008年

この項目では、国際的な視点に基づいた2008年について記載する。.

新しい!!: アルファ磁気分光器と2008年 · 続きを見る »

2009年

この項目では、国際的な視点に基づいた2009年について記載する。.

新しい!!: アルファ磁気分光器と2009年 · 続きを見る »

2010年

この項目では、国際的な視点に基づいた2010年について記載する。.

新しい!!: アルファ磁気分光器と2010年 · 続きを見る »

2011年

この項目では、国際的な視点に基づいた2011年について記載する。.

新しい!!: アルファ磁気分光器と2011年 · 続きを見る »

2015年

この項目では、国際的な視点に基づいた2015年について記載する。.

新しい!!: アルファ磁気分光器と2015年 · 続きを見る »

2月16日

2月16日(にがつじゅうろくにち)はグレゴリオ暦で年始から47日目にあたり、年末まであと318日(閏年では319日)ある。.

新しい!!: アルファ磁気分光器と2月16日 · 続きを見る »

7月11日

7月11日(しちがつじゅういちにち)はグレゴリオ暦で年始から192日目(閏年では193日目)にあたり、年末まであと173日ある。誕生花はハイビスカス、インパチェンス。.

新しい!!: アルファ磁気分光器と7月11日 · 続きを見る »

9月25日

9月25日(くがつにじゅうごにち)はグレゴリオ暦で年始から268日目(閏年では269日目)にあたり、年末まであと97日ある。.

新しい!!: アルファ磁気分光器と9月25日 · 続きを見る »

9月27日

9月27日(くがつにじゅうななにち、くがつにじゅうしちにち)は、グレゴリオ暦で年始から270日目(閏年では271日目)にあたり、年末まであと95日である。.

新しい!!: アルファ磁気分光器と9月27日 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »