ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

Mertens 関数

索引 Mertens 関数

Mertens 関数 は任意の正の整数 n において で表される関数のことである。また、次のように定義して正の実数に拡張できます。 より形式的には、M(x)は、偶数の素因数 - 奇数を持つものの数を引いたxまでの平方因子をもたない整数です。 Mertens関数は、平均値とピーク値の両方で正負の方向にゆっくりと成長し、M(n).

16 関係: 偶数奇数実数平方因子をもたない整数チェビシェフ関数メリン変換メビウス関数リーマンゼータ関数ヘルマン・ワイルヘロンの公式ディリクレ級数ファレイ数列オイラー積素因数零点整数

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: Mertens 関数と偶数 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: Mertens 関数と奇数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: Mertens 関数と実数 · 続きを見る »

平方因子をもたない整数

数学において、無平方数(むへいほうすう、square-free integer)または平方因子を持たない整数 (integer without square factors) とは、平方因子を持たない数、すなわち より大きい完全平方で割り切れないような整数(通例として正の整数)をいう。与えられた整数が無平方数であるとき、その整数は無平方 (square-free) であるともいう。例えば、10 は無平方だが、18 は 9.

新しい!!: Mertens 関数と平方因子をもたない整数 · 続きを見る »

チェビシェフ関数

チェビシェフ関数(チェビシェフかんすう、Chebyshev function)は数論における関数。パフヌティ・チェビシェフに因んで呼ばれている。 二つの関数があり、第一チェビシェフ関数 ϑ(x) または θ(x) とは で定義される関数のことであり、第二チェビシェフ関数 ψ(x) とは で定義される関数のことである。ここで \Lambda はフォン・マンゴルト関数である。 これらの関数はともに x より小さな素数の分布に関する情報を与える点で素数計数関数 π(x) と類似しているが、素数の分布に関する定理を証明する上では素数計数関数より使いやすく、そのため一般には素数の分布に関する定理の証明ではチェビシェフ関数が用いられることが多い。.

新しい!!: Mertens 関数とチェビシェフ関数 · 続きを見る »

メリン変換

数学におけるメリン変換(メリンへんかん、)とは、両側ラプラス変換の乗法版と見なされる積分変換である。この変換はディリクレ級数の理論と密接に関連しており、数論や漸近展開の理論においてよく用いられる。ラプラス変換、フーリエ変換、ガンマ関数や特殊関数の理論と関係している。 この変換の名はフィンランドの数学者の名にちなむ。.

新しい!!: Mertens 関数とメリン変換 · 続きを見る »

メビウス関数

メビウス関数(メビウスかんすう)は、数論や組合せ論における重要な関数である。メビウスの輪で有名なドイツの数学者アウグスト・フェルディナント・メビウス (August Ferdinand Möbius) が1831年に紹介したことから、この名が付けられた。.

新しい!!: Mertens 関数とメビウス関数 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: Mertens 関数とリーマンゼータ関数 · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: Mertens 関数とヘルマン・ワイル · 続きを見る »

ヘロンの公式

ヘロンの公式(ヘロンのこうしき)は任意の三角形の3辺a, b, c の長さから面積 T を求める公式。アレクサンドリアのヘロンが彼の著書『Metrica』の中で証明を与えていることから彼に帰せられる。.

新しい!!: Mertens 関数とヘロンの公式 · 続きを見る »

ディリクレ級数

ディリクレ級数(-きゅうすう、Dirichlet series)とは、 複素数列 \scriptstyle\_ および複素数 s に対して、 で表される級数のことをいう。一般ディリクレ級数と区別するため、通常ディリクレ級数 (ordinary Dirichlet series)ともいう。 1839年、ディリクレが算術級数定理を証明する際に考察されたことに因み、彼の名が付けられている。 リーマンゼータ関数やディリクレのL関数はディリクレ級数のなかで、よく知られているものの1つである。 s を変数とみなし、ディリクレ級数の収束性を問わないとき、形式的ディリクレ級数 (formal Dirichlet series)という。 セルバーグクラスであるディリクレ級数は、リーマン予想に従うことが予想されている。.

新しい!!: Mertens 関数とディリクレ級数 · 続きを見る »

ファレイ数列

数学で、ファレイ数列(ファレイすうれつ, Farey sequence) とは、既約分数を順に並べた一群の数列であり、以下に述べるような初等整数論における興味深い性質を持つ。 正確にいえば、 定義によっては 0, 1 は数列から省かれる場合もある。 なお、英語では と呼ばれることも多いが、(級数)の定義からいえば厳密には誤りである。.

新しい!!: Mertens 関数とファレイ数列 · 続きを見る »

オイラー積

イラー積(-せき、Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明したレオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。 a(n) は n に関する乗法的関数、p は全ての素数にわたり、変数 s は複素数である。このような表示が成り立つためには a(n) が a(1).

新しい!!: Mertens 関数とオイラー積 · 続きを見る »

素因数

数学において、ある自然数の素因数(そいんすう、prime factor)とは、その約数になる素数のことである。ある数の素因数を求めてその積の形で表すことを素因数分解という。例えば 60 は 22×3×5 と素因数分解されるので 60 の相異なる素因数は 2, 3, 5 の3つである。また、7 は素数であるため、7 の素因数は 7 自身のみとなる。素因数のことを素因子(そいんし)、素因数分解のことを素因子分解ということもある。 2つの自然数が互いに素であることと、2つの自然数が共通の素因数を持たないことは同値である。なお 1 は素因数を持たない数であり、したがって 1 は全ての(1 自身を含めた)自然数と互いに素である。 自然数の素因数分解の結果は、素因数を掛ける順番の違いを除けば一意的に決まる。この事実は算術の基本定理と呼ばれている。 スミス数は自然数であって、その素因数の数字の和と各桁の数字の和が等しい数のことである。また、ルース=アーロン・ペアは連続する自然数の組であって、それぞれの素因数の和が互いに等しいような二数のことである。.

新しい!!: Mertens 関数と素因数 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

新しい!!: Mertens 関数と零点 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: Mertens 関数と整数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »