ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

電子伝達系

索引 電子伝達系

真核生物では、ミトコンドリアの電子伝達鎖は酸化的リン酸化の場となる。クエン酸回路で作られたNADHとコハク酸は酸化され、ATP合成酵素にエネルギーを与える。 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。.

92 関係: ADPATP合成酵素原核生物古細菌大腸菌嫌気呼吸宿主代謝ペリプラズムミトコンドリアミトコンドリアマトリックスミトコンドリア内膜ミトコンドリアDNAミトコンドリア膜間腔ノーベル化学賞チラコイドメナキノンユビキノンユビキノール-シトクロムcレダクターゼラジカル (化学)リン酸ロドキノンヘムプロトンポンプヒドロゲナーゼピルビン酸ピーター・ミッチェルデオキシリボ核酸フマル酸フラビンモノヌクレオチドフラビンアデニンジヌクレオチドニコチンアミドアデニンジヌクレオチドニコチンアミドアデニンジヌクレオチドリン酸分子量呼吸アデノシン三リン酸アデノシン二リン酸アセチルCoAイオンチャネルウシオペロンクエン酸回路グリセロール3-リン酸グルコースゲノムコハク酸コハク酸デヒドロゲナーゼシンポートシトクロムシトクロムc...シトクロムcオキシダーゼシアン化物タンパク質サブユニット光合成細胞質細胞膜細胞核真核生物生体膜生物生物学鞭毛解糖系高等学校超酸化物能動輸送葉緑体脱水素酵素脂肪酸自由エネルギー酸化ストレス酸化的リン酸化酸化還元反応酸化還元酵素酸素酵素鉄・硫黄クラスター鉄硫黄タンパク質電子電子伝達体電子伝達系電子移動反応電気陰性度NADH:ユビキノン還元酵素 (水素イオン輸送型)水素イオン日光 インデックスを展開 (42 もっと) »

ADP

ADP.

新しい!!: 電子伝達系とADP · 続きを見る »

ATP合成酵素

ATP合成酵素(—ごうせいこうそ)とは、呼吸鎖複合体によって形成されたプロトン濃度勾配と膜電位からなるプロトン駆動力を用いて、ADPとリン酸からアデノシン三リン酸 (ATP) の合成を行う酵素である。別名ATPシンターゼ、呼吸鎖複合体V、複合体Vなど。 なお、シンテターゼはATPなどの高エネルギー化合物の分解と共役する反応を触媒する酵素を指すが、ATP合成に他のエネルギー化合物を用いることはないので、「ATPシンテターゼ」という呼称は正しくない。.

新しい!!: 電子伝達系とATP合成酵素 · 続きを見る »

原核生物

原核生物(げんかくせいぶつ、ラテン語: Prokaryota プローカリオータ、英語: Prokaryote プロカリオート)とは真核、つまり明確な境界を示す核膜を持たない細胞からなる生物のことで、すべて単細胞生物。 真核生物と対をなす分類で、性質の異なる真正細菌(バクテリア)と古細菌(アーキア)の2つの生物を含んでいる。.

新しい!!: 電子伝達系と原核生物 · 続きを見る »

古細菌

古細菌(こさいきん、アーキア、ラテン語:archaea/アルカエア、単数形:archaeum, archaeon)は、生物の分類の一つで、''sn''-グリセロール1-リン酸のイソプレノイドエーテル(他生物はsn-グリセロール3-リン酸の脂肪酸エステル)より構成される細胞膜に特徴付けられる生物群、またはそこに含まれる生物のことである。古"細菌"と名付けられてはいるが、細菌(バクテリア。本記事では明確化のため真正細菌と称する)とは異なる系統に属している。このため、始原菌(しげんきん)や後生細菌(こうせいさいきん)という呼称が提案されたが、現在では細菌や菌などの意味を含まない を音写してアーキアと呼ぶことが多くなっている。 形態はほとんど細菌と同一、細菌の一系統と考えられていた時期もある。しかしrRNAから得られる進化的な近縁性は細菌と真核生物の間ほども離れており、現在の生物分類上では独立したドメインまたは界が与えられることが多い。一般には、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌など、極限環境に生息する生物として認知されている。.

新しい!!: 電子伝達系と古細菌 · 続きを見る »

大腸菌

大腸菌(だいちょうきん、学名: Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特にヒトなどの場合大腸に生息する。アルファベットで短縮表記でとすることがある(詳しくは#学名を参照のこと)。大きさは通常短軸0.4-0.7μm、長軸2.0-4.0μmだが、長軸が短くなり球形に近いものもいる。 バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで化学物質の生産にも利用される(下図)。 大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。.

新しい!!: 電子伝達系と大腸菌 · 続きを見る »

嫌気呼吸

嫌気呼吸(けんきこきゅう)とは、最終電子受容体として酸素を用いない呼吸の総称である。アルコール発酵など発酵とは異なり、電子伝達系や酸化的リン酸化過程によってATPを合成する。.

新しい!!: 電子伝達系と嫌気呼吸 · 続きを見る »

宿主

宿主(しゅくしゅ、英語:host)あるいは寄主(きしゅ)とは、寄生虫や菌類等が寄生、又は共生する相手の生物。口語では「やどぬし」と訓読されるが、学術用語としては「しゅくしゅ」読みが正式である。.

新しい!!: 電子伝達系と宿主 · 続きを見る »

代謝

代謝(たいしゃ、metabolism)とは、生命の維持のために有機体が行う、外界から取り入れた無機物や有機化合物を素材として行う一連の合成や化学反応のことであり、新陳代謝の略称である生化学辞典第2版、p.776-777 【代謝】。これらの経路によって有機体はその成長と生殖を可能にし、その体系を維持している。代謝は大きく異化 (catabolism) と同化 (anabolism) の2つに区分される。異化は物質を分解することによってエネルギーを得る過程であり、例えば細胞呼吸がある。同化はエネルギーを使って物質を合成する過程であり、例えばタンパク質・核酸・多糖・脂質の合成がある。 代謝の化学反応は代謝経路によって体系づけられ、1つの化学物質は他の化学物質から酵素によって変換される。酵素は触媒として、熱力学的に不利な反応を有利に進めるため極めて重要な存在である。また、酵素は、細胞の環境もしくは他の細胞からの信号(シグナル伝達)の変化に反応することにより代謝経路の調節も行う。 有機体の代謝はその物質の栄養価の高さがどれだけか、また、毒性の高さがどれだけかを決定する。例えば、いくつかの原核生物は硫化水素を使って栄養を得ているが、この気体は動物にとっては毒であることが知られている。また、代謝速度はその有機体がどれだけの食物を必要としているかに影響を与える。.

新しい!!: 電子伝達系と代謝 · 続きを見る »

ペリプラズム

ラム陰性菌の細胞壁 ペリプラズム (Periplasmic space) はグラム陰性菌において、細胞膜と細胞外膜の2枚の生体膜に囲まれた空間である。グラム陽性菌には細胞外膜が存在しないが、細胞膜と細胞壁の間は”inner wall zone”(IWZ) と呼ばれ、厳密な意味でのペリプラズムとしてみなされる, Matias, V. R., and T. J. Beveridge.

新しい!!: 電子伝達系とペリプラズム · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: 電子伝達系とミトコンドリア · 続きを見る »

ミトコンドリアマトリックス

ミトコンドリアマトリックス(Mitochondrial matrix)は、ピルビン酸その他の小さな有機分子の酸化を触媒する可溶性酵素を含むミトコンドリアの部分である。 マトリックスはミトコンドリアDNAとリボソームも含む。「マトリックス」という用語は、この空間が細胞質と比較すると粘着質であることに由来する。細胞質の水分含量はタンパク質1mg当たり3.8μlであるのに対し、ミトコンドリアマトリックスでは、タンパク質1mg当たり0.8μlの水分含量である 。ミトコンドリアがどのようにして、ミトコンドリア内膜内外の浸透圧の平衡を保っているのかは分かっていないが、膜は、水の輸送を調整する導管と考えられているアクアポリンを持つ。ミトコンドリアマトリックスのpHは、約7.8である 。.

新しい!!: 電子伝達系とミトコンドリアマトリックス · 続きを見る »

ミトコンドリア内膜

ミトコンドリア内膜(Inner mitochondrial membrane)は、シトクローム等のタンパク質がより適切に効率的に機能できるように、より大きな空間を作るため、ミトコンドリア内にクリステと呼ばれる区画を作る膜である。電子伝達系は、ミトコンドリア内膜に位置する。またミトコンドリア内膜には、膜を通して代謝物を輸送する輸送タンパク質も存在する。 ミトコンドリア内膜の脂肪組成は、細菌の膜のものに似ている。この現象は、ミトコンドリアの起源を真核生物のホスト細胞に内在化した原核生物であるとする細胞内共生説によって説明できる。.

新しい!!: 電子伝達系とミトコンドリア内膜 · 続きを見る »

ミトコンドリアDNA

ミトコンドリアDNA(みとこんどりあディーエヌエー、mtDNA,mDNA)とは、細胞小器官であるミトコンドリア内にあるDNAのこと。ミトコンドリアが細胞内共生由来であるとする立場から、ミトコンドリアゲノムと呼ぶ場合もある。.

新しい!!: 電子伝達系とミトコンドリアDNA · 続きを見る »

ミトコンドリア膜間腔

ミトコンドリアの構造 ミトコンドリア膜間腔(みとこんどりあまくかんくう、みとこんどりあまくかんこう、mitochondiral intermembrane space)は、ミトコンドリアの内膜と外膜の間の領域である。ミトコンドリアの機能や維持、さらには細胞自体の生死に関わる重要な因子を多く含んでいる。.

新しい!!: 電子伝達系とミトコンドリア膜間腔 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: 電子伝達系とノーベル化学賞 · 続きを見る »

チラコイド

チラコイド(緑)は、葉緑体の中にある。 チラコイド(Thylakoid)は、葉緑体やシアノバクテリア中で膜に結合した区画である。光合成の光化学反応が起こる場所である。チラコイドという言葉は、「嚢」を表すギリシャ語の θύλακος (thylakos)に由来する。チラコイドは、ルーメンの周りを取り巻くチラコイド膜から構成される。緑色植物の葉緑体のチラコイドは円盤状で、積み重なってグラナと呼ばれる構造をなしている。グラナはストロマとつながり、単一機能を持つ構造を作っている。.

新しい!!: 電子伝達系とチラコイド · 続きを見る »

メナキノン

メナキノン(menaquinone; MK)は、2-メチル-1,4-ナフトキノンの3位をプレニル化した化合物の総称。主として原核生物が合成し、嫌気的呼吸鎖においてユビキノンに相当する電子伝達体として機能している。また動物体内ではガンマグルタミルカルボキシラーゼの補因子として働くことから、ビタミンK2とも呼ばれる。.

新しい!!: 電子伝達系とメナキノン · 続きを見る »

ユビキノン

ユビキノン(略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、動物体内で合成することができるためビタミンではない。.

新しい!!: 電子伝達系とユビキノン · 続きを見る »

ユビキノール-シトクロムcレダクターゼ

ユビキノール-シトクロムcレダクターゼ(ubiquinol-cytochrome-c reductase)またはシトクロムbc 1複合体(cytochrome bc 1 complex)もしくは単に複合体III(complex III)は、電子伝達系の3番目の複合体で、生化学的なATP合成(酸化的リン酸化)において重要な役割を担っている。複合体IIIは、ミトコンドリア遺伝子(シトクロムb)と核遺伝子(それ以外のサブユニット)の両方にコードされているマルチサブユニット膜貫通リポタンパク質である。複合体IIIは、全ての動物のミトコンドリア、全ての好気性真核生物、およびほとんどの真性細菌の内膜に存在する。複合体IIIの突然変異は、多系統疾患や運動耐容能低下の原因となる。.

新しい!!: 電子伝達系とユビキノール-シトクロムcレダクターゼ · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 電子伝達系とラジカル (化学) · 続きを見る »

リン酸

リン酸(リンさん、燐酸、phosphoric acid)は、リンのオキソ酸の一種で、化学式 H3PO4 の無機酸である。オルトリン酸(おるとりんさん、orthophosphoric acid)とも呼ばれる。リン酸骨格をもつ他の類似化合物群(ピロリン酸など)はリン酸類(リンさんるい、phosphoric acids)と呼ばれている。リン酸類に属する化合物を「リン酸」と略することがある。リン酸化物に水を反応させることで生成する。生化学の領域では、リン酸イオン溶液は無機リン酸 (Pi) と呼ばれ、ATP や DNA あるいは RNA の官能基として結合しているものを指す。.

新しい!!: 電子伝達系とリン酸 · 続きを見る »

ロドキノン

ドキノン(rhodoquinone, RQ)は、ユビキノンの6位のメトキシ基がアミノ基に置換された化合物の総称。主として真核生物が合成し、嫌気的呼吸鎖においてユビキノンに相当する電子伝達体として機能している。ユビキノン同様に、イソプレン側鎖の長さの異なる化合物が含まれており、イソプレン単位の数を用いてRQ-9、RQ-10のように表記する。.

新しい!!: 電子伝達系とロドキノン · 続きを見る »

ヘム

ヘムaの構造 ヘムbの構造 ヘム(英語: Haem、米語: Heme、ドイツ語: Häm)は、2価の鉄原子とポルフィリンから成る錯体である。通常、2価の鉄とIX型プロトポルフィリンからなるプロトヘムであるフェロヘムのことをさすことが多い。ヘモグロビン、ミオグロビン、ミトコンドリアの電子伝達系(シトクロム)、薬物代謝酵素(P450)、カタラーゼ、一酸化窒素合成酵素、ペルオキシダーゼなどのヘムタンパク質の補欠分子族として構成する。ヘモグロビンは、ヘムとグロビンから成る。ヘムの鉄原子が酸素分子と結合することで、ヘモグロビンは酸素を運搬している。 フェリヘムやヘモクロム、ヘミン、ヘマチンなど、その他のポルフィリンの鉄錯体もヘムと総称されることもある。.

新しい!!: 電子伝達系とヘム · 続きを見る »

プロトンポンプ

プロトンポンプ (Proton Pump) は、生物体内で光エネルギーなどを利用して水素イオン(プロトン)を能動輸送し、生体膜の内外に膜電位やプロトン勾配を作り出す機能、またはそれを行うタンパク質複合体をいう。プロトンポンプによって形成されたプロトン勾配はATP合成などに利用される。ATP合成酵素自身も逆反応として、ATPの加水分解によるエネルギーを利用してプロトンポンプとして働くことができる。胃酸の分泌にもこのATPをエネルギー源とするタイプのプロトンポンプが働いている。 高度好塩菌の表面に存在する紫膜では、バクテリオロドプシンと呼ばれるタンパク質が配向しており、光エネルギーを利用しプロトンポンプ機能を発現している。このほか光合成反応中心(光による)や、電子伝達系(酸化還元による)もプロトンポンプ機能を持っている。.

新しい!!: 電子伝達系とプロトンポンプ · 続きを見る »

ヒドロゲナーゼ

ヒドロゲナーゼ (hydrogenase) は、分子型水素 (H2) の可逆的な酸化還元反応を触媒する酵素である。この酵素は嫌気性代謝において重要な役割を果たしている。.

新しい!!: 電子伝達系とヒドロゲナーゼ · 続きを見る »

ピルビン酸

ピルビン酸(ピルビンさん、Pyruvic acid)は有機化合物の一種で、示性式が CH3COCOOH と表されるカルボン酸である。IUPAC命名法では 2-オキソプロパン酸 (2-oxopropanoic acid) と表される。α-ケトプロピオン酸 (α-ketopropionic acid) あるいは焦性ブドウ酸 (pyroracemic acid) とも呼ばれる。水、エタノール、エーテルなど、さまざまな極性溶媒や無極性溶媒と任意な比率で混和する。酢酸に似た酸味臭を示す。2位のカルボニル基を還元すると乳酸となる。 生体内では解糖系による糖の酸化で生成する。 ピルビン酸デヒドロゲナーゼ複合体の作用により補酵素Aと結合するとアセチルCoAとなり、クエン酸回路や脂肪酸合成系に組み込まれる。 また、グルタミン酸からアミノ基を転移されるとアラニンになる。.

新しい!!: 電子伝達系とピルビン酸 · 続きを見る »

ピーター・ミッチェル

ピーター・デニス・ミッチェル(Peter Dennis Mitchell, 1920年9月29日 – 1992年4月10日)はイギリスの生化学者で、ATP合成の電気化学勾配メカニズムの発見により1978年度のノーベル化学賞を受賞した。イングランドのサリー、ミッチャム(現在のマートン・ロンドン特別区)の生まれ。.

新しい!!: 電子伝達系とピーター・ミッチェル · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 電子伝達系とデオキシリボ核酸 · 続きを見る »

フマル酸

フマル酸(フマルさん、Fumaric Acid)は構造式 HOOC–CH.

新しい!!: 電子伝達系とフマル酸 · 続きを見る »

フラビンモノヌクレオチド

フラビンモノヌクレオチド(Flavin mononucleotide、FMN)またはリボフラビン-5'-リン酸(riboflavin-5'-phosphate)は、NADHデヒドロゲナーゼを含む様々な酸化還元酵素の補欠分子族であり、リボフラビンキナーゼによってリボフラビン(ビタミンB2)から合成される。触媒回路において、酸化型(FMN)とセミキノン(FMNH•)そして還元型(FMNH2)は可逆的に相互変換できる。FMNはNADと比べて強力な酸化剤であり、1から2個の電子輸送を担う。 FMNは細胞と組織で見つかる主要なリボフラビンの型である。合成するには高くつくが、リボフラビンより溶けやすい。 E番号はE101aで、食品の着色料として使われる。 非常に関連性の大きな着色料にリボフラビン-5'-リン酸ナトリウム(E106)があり、リボフラビンの5'-一リン酸エステルのモノナトリウム塩が主成分である。摂取すると速やかにフリーのリボフラビンに変換される。この着色料はジャムや乳製品、お菓子そして砂糖製品など幼児や子ども向けの多くの食品に使われている。.

新しい!!: 電子伝達系とフラビンモノヌクレオチド · 続きを見る »

フラビンアデニンジヌクレオチド

フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、FAD)は、いくつかの代謝反応に必要な酸化還元反応の補因子である。FADには2種の酸化還元状態が存在し、それらの生化学的役割は2種の間で変化する。FADは還元されることによって2原子の水素を受容し、FADH2となる。 FADH2はエネルギーキャリアであり、還元された補酵素はミトコンドリアでの酸化的リン酸化の基質として使われる。FADH2は酸化されてFADとなり、これは一般的なエネルギーキャリアのATPを2分子作ることが可能である。真核生物の代謝でのFADの一次供給源はクエン酸回路とβ酸化である。クエン酸回路では、FADはコハク酸をフマル酸に酸化するコハク酸デヒドロゲナーゼの補欠分子族である。一方、β酸化ではアシルCoAデヒドロゲナーゼの酵素反応の補酵素として機能する。 FADはリボフラビン(ビタミンB2)から誘導される。いくつかの酸化還元酵素はフラボ酵素またはフラビンタンパク質(フラボプロテイン)と呼ばれ、電子移動において機能する補欠分子族としてFADを要する。 Category:フラビン Category:ヌクレオチド Category:補因子.

新しい!!: 電子伝達系とフラビンアデニンジヌクレオチド · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: 電子伝達系とニコチンアミドアデニンジヌクレオチド · 続きを見る »

ニコチンアミドアデニンジヌクレオチドリン酸

ニコチンアミドアデニンジヌクレオチドリン酸(ニコチンアミドアデニンジヌクレオチドリンさん、)とは、光合成経路あるいは解糖系のエントナー-ドウドロフ経路などで用いられている電子伝達体である。化学式:C21H21N7O17P3、分子量:744.4。ニコチンアミドアデニンジヌクレオチドと構造上良く似ており、脱水素酵素の補酵素として一般的に機能している。略号であるNADP+(あるいはNADP)として一般的には良く知られている。酸化型 (NADP+) および還元型 (NADPH) の2つの状態を有し、二電子還元を受けるが中間型(一電子還元型)は存在しない。 かつては、トリホスホピリジンヌクレオチド (TPN)、補酵素III、コデヒドロゲナーゼIII、コエンザイムIIIなどと呼称されていたが、現在はNADP+に統一されている。別名、ニコチン酸アミドジヌクレオチドリン酸など。.

新しい!!: 電子伝達系とニコチンアミドアデニンジヌクレオチドリン酸 · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

新しい!!: 電子伝達系と分子量 · 続きを見る »

呼吸

生物における呼吸(こきゅう)は、以下の二種類に分けられる。.

新しい!!: 電子伝達系と呼吸 · 続きを見る »

アデノシン三リン酸

アデノシン三リン酸(アデノシンさんリンさん、adenosine triphosphate)とは、アデノシンのリボース(=糖)に3分子のリン酸が付き、2個の高エネルギーリン酸結合を持つヌクレオチドのこと。IUPAC名としては「アデノシン 5'-三リン酸」。一般的には、「adenosine triphosphate」の下線部のアルファベットをとり、短縮形で「ATP(エー・ティー・ピー)」と呼ばれている。.

新しい!!: 電子伝達系とアデノシン三リン酸 · 続きを見る »

アデノシン二リン酸

アデノシン二リン酸(アデノシンにリンさん、Adenosine diphosphate, ADP と略)は、アデニン、リボース、および二つのリン酸分子からなる化学物質。リン酸は高エネルギーリン酸結合をとっており、ATP から ADP とリン酸基に分かれる際に放出されるエネルギーは生体内での主要なエネルギー源となっている。詳細は ATP の項目を参照のこと。 アデニル酸(AMP)とATPからアデニル酸キナーゼによって生成される。 ATPアーゼ(ATPase)によりATPが加水分解される場合にも生成される。 ADPは上記の化学反応のようにATPの分解やAMPのリン酸化によって生ずる。.

新しい!!: 電子伝達系とアデノシン二リン酸 · 続きを見る »

アセチルCoA

アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。テルペノイドはアセチルCoA二分子の反応によって生じるアセトアセチルCoAを原料とする。消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸#脂肪酸生合成系参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。.

新しい!!: 電子伝達系とアセチルCoA · 続きを見る »

イオンチャネル

イオンチャネルまたはイオンチャンネル(ion channel)とは、細胞の生体膜(細胞膜や内膜など)にある膜貫通タンパク質の一種で、受動的にイオンを透過させるタンパク質の総称である。細胞の膜電位を維持・変化させるほか、細胞でのイオンの流出入もおこなう。神経細胞など電気的興奮性細胞での活動電位の発生、感覚細胞での受容器電位の発生、細胞での静止膜電位の維持などに関与する。.

新しい!!: 電子伝達系とイオンチャネル · 続きを見る »

ウシ

ウシ(牛 英名:cattle)は、哺乳綱鯨偶蹄目ウシ科ウシ亜科の動物である。野生のオーロックスが家畜化されて生まれた。 「ウシ」は、狭義では特に(種レベルで)家畜種のウシ(学名:Bos taurus 「ボース・タウルス」)を指す。一方、やや広義では、ウシ属 Bosを指し、そこにはバンテンなどの野生牛が含まれる。さらに広義では、ウシ亜科 Bovinae の総称となる。すなわち、アフリカスイギュウ属、アジアスイギュウ属、ウシ属、バイソン属などを指す。これらは一般の人々も牛と認めるような共通の体形と特徴を持っている。大きな胴体、短い首と一対の角、胴体と比べて短めの脚、軽快さがなく鈍重な動きである。 ウシと比較的近縁の動物としては、同じウシ亜目(反芻亜目)にキリン類やシカ類、また、同じウシ科の仲間としてヤギ、ヒツジ、レイヨウなどがあるが、これらが牛と混同されることはまずない。 以下ではこのうち、家畜ウシについて解説する。.

新しい!!: 電子伝達系とウシ · 続きを見る »

オペロン

ペロン (Operon) とは.

新しい!!: 電子伝達系とオペロン · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: 電子伝達系とクエン酸回路 · 続きを見る »

グリセロール3-リン酸

''sn''-グリセロール3-リン酸(グリセロール3-りんさん、sn-glycerol 3-phosphate, G3P)は、リン酸とグリセロールから誘導されたリン酸エステルで、グリセロリン脂質の構成要素の一つである。同等に適切な名前として、グリセロ-3-リン酸(glycero-3-phosphate)、3-O-ホスホノグリセロール(3-O-phosphonoglycerol)、3-ホスホグリセロール(3-phosphoglycerol)がある。また歴史的経緯により-グリセロール3-リン酸(L-glycerol 3-phosphate)、-グリセロール1-リン酸(D-glycerol 1-phosphate)、-α-グリセロリン酸(L-α-glycerophosphoric acid)とも呼ばれる。.

新しい!!: 電子伝達系とグリセロール3-リン酸 · 続きを見る »

グルコース

ルコース(glucose)は、分子式 C6H12O6を持つ単純な糖である。とも呼ばれる。グルコースは血糖として動物の血液中を循環している。糖は植物などに含まれる葉緑体において、太陽光からのエネルギーを使って水と二酸化炭素から光合成によって作られる。グルコースはのための最も重要なエネルギー源である。植物ではデンプン、動物ではグリコーゲンのようなポリマーとして貯蔵される。 グルコースは6個の炭素原子を含み、単糖の下位区分であるヘキソースに分類される。D-グルコースは16種類の立体異性体の一つである。D型異性体であるD-グルコースは、デキストロース(dextrose)とも呼ばれ、天然に広く存在するが、L-型異性体であるL-グルコースはそうではない。グルコースは乳糖や甘蔗糖、麦芽糖、セルロース、グリコーゲンなどといった炭水化物の加水分解によって得ることができる。グルコースは通常コーンスターチから商業的に製造されている。 グルコースは世界保健機関必須医薬品モデル・リストに入っている。Glucoseという名称は、甘いを意味するギリシア語γλυκός (glukós) 由来のフランス語から来ている。接尾辞の "-ose" は炭水化物を示す化学分類辞である。.

新しい!!: 電子伝達系とグルコース · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: 電子伝達系とゲノム · 続きを見る »

コハク酸

ハク酸(琥珀酸、コハクさん、succinic acid)は、構造式 HOOC–(CH2)2–COOH で表されるカルボン酸の一種。はじめコハクの乾留により見つかったためにこの名がついた。英名のsuccinic acidはラテン語のsuccinum(コハク)に由来する。.

新しい!!: 電子伝達系とコハク酸 · 続きを見る »

コハク酸デヒドロゲナーゼ

ハク酸デヒドロゲナーゼ (succinate dehydrogenase, SDH)は、コハク酸をフマル酸へ酸化する酸化還元酵素である。コハク酸脱水素酵素とも。このとき同時にユビキノンなどのキノンを還元することから、コハク酸キノンレダクターゼ(succinate-quinone reductase, SQR)とも呼ばれる。クエン酸回路の8段階目の反応を担い、また呼吸鎖においては複合体II(Complex II)と呼ばれている。真核生物ではミトコンドリア内膜に、原核生物では細胞膜に固定されている酵素複合体である。。.

新しい!!: 電子伝達系とコハク酸デヒドロゲナーゼ · 続きを見る »

シンポート

ンポート(Symport)は、細胞膜などのリン脂質膜にある膜内在性タンパク質(integral membrane protein)を介して、複数の分子またはイオンを同方向に輸送する機構である。共輸送ともいい、シンポートを行う膜タンパク質をシンポーター(共輸送体)という。 典型的なシンポートとして、一つのイオンが濃度勾配によってシンポーターを通過する際のエネルギーを利用して、別の分子を濃度勾配に逆らって能動輸送をするという機構がある。.

新しい!!: 電子伝達系とシンポート · 続きを見る »

シトクロム

トクロム(cytochrome, cyt、Zytochrom, Cytochrom)は、酸化還元機能を持つヘム鉄を含有する、ヘムタンパク質の一種である。1886年にMacMunnによって存在が指摘され、1925年にデーヴィッド・ケイリン によるウマの胃に寄生するヒツジバエ科ウマバエ幼虫を用いた研究によって酸化還元機能を持ち好気呼吸に重要な役割を持つことが実証された。 チトクロム、サイトクロム、シトクロームなどと呼ばれることもある。.

新しい!!: 電子伝達系とシトクロム · 続きを見る »

シトクロムc

トクロムc(cytochrome c, cyt c)は、ミトコンドリアの内膜に弱く結合しているヘムタンパク質の一種である。タンパク質のシトクロムcファミリーに属する。他のシトクロムと異なり可溶性(100 g/L)で、電子伝達系において不可欠な因子である。電子伝達系では複合体IIIから1電子を受け取り、複合体IVに1電子を引き渡す。酸化型をフェリシトクロムc、還元型をフェロシトクロムcと呼ぶこともある。ヒトではシトクロムcは CYCS 遺伝子にコードされている。.

新しい!!: 電子伝達系とシトクロムc · 続きを見る »

シトクロムcオキシダーゼ

トクロムcオキシダーゼ (cytochrome c oxidase, COX) または複合体IV(Complex IV)またはcytochrome a3 は、バクテリアおよびミトコンドリアで見られる膜貫通タンパク質複合体の一つである。 ミトコンドリア膜(またはバクテリア膜)における電子伝達系の最後の酵素であり、4分子のシトクロムcからそれぞれ電子を受け取り、酸素1分子に転移させ2分子の水に変換する機能を持つ。この過程では、マトリックス由来の4個のプロトンから水が生成されるのと同時に4個のプロトンがマトリックスから膜間スペースに透過する。これにより発生した膜間の電気化学ポテンシャルの差がATP合成酵素によるATP合成に用いられる。.

新しい!!: 電子伝達系とシトクロムcオキシダーゼ · 続きを見る »

シアン化物

アン化物イオンの(上から)構造式、空間充填モデル、電子ポテンシャル、HOMOの図 シアン化物(シアンかぶつ、cyanide)とは、シアン化物イオン (CN-) をアニオンとして持つ塩を指す呼称。代表例としてはシアン化ナトリウム (NaCN)、シアン化カリウム (KCN) など。 広義には、配位子としてシアン (CN-) を持つ錯体(例: フェリシアン化カリウム、K3)、シアノ基が共有結合で結びついた無機化合物(例: シアノ水素化ホウ素ナトリウム、NaBH3CN)もシアン化物に含まれる。 それぞれの化合物の化学的性質は、シアン化物イオンやシアノ基が他の部分とどのように結びついているかにより大きく異なる。 有機化合物のうちニトリル類(例: アセトニトリル、別名: シアン化メチル、CH3CN)は「シアン化~」と呼ばれることがあるが、性質は大きく異なる。 シアン化合物は、一般に人体に有毒であり、ごく少量で死に至る。このことから、しばしば、シアン化合物による中毒死を目的として、毒殺や自殺に利用されてきた経緯がある。.

新しい!!: 電子伝達系とシアン化物 · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 電子伝達系とタンパク質 · 続きを見る »

サブユニット

構造生物学におけるサブユニット(subunit)は、他のタンパク質と会合して多量体タンパク質やオリゴマータンパク質を形成する単一のタンパク質分子のことを指す。日本語では、亜単位、亜粒子などと訳される。 自然界に存在する多くのタンパク質や酵素は多量体であり、主要な例としてヘモグロビンやイオンチャネル、DNAポリメラーゼ、ヌクレオソーム、微小管などがある。多量体タンパク質の各サブユニットは、お互いに全く同一であったり、相同的であったり、全く異なる個々が全く異なる仕事を担ったりする。ある種のタンパク質会合体では、片方のサブユニットを「調節サブユニット」と呼び、もう片方のサブユニットを「触媒サブユニット」と呼ぶ。調節サブユニットと触媒サブユニットがお互いに会合形成した酵素は、多くの場合、ホロ酵素と呼ばれる。1個のサブユニットは1本のポリペプチド鎖から成る。1本のポリペプチド鎖は1本の遺伝子によってコードされている。つまり、任意のタンパク質を生成するためには、必ずそのタンパク質を構成する各サブユニットをコードする1本の遺伝子が存在しなければならない。 サブユニットの名前にはギリシャ文字やローマ字が用いられることが多く、各種のサブユニットの個数は下付き文字で表示される。例えば、1分子のATPシンターゼはαと呼ばれるサブユニットを3個持っているので、α3と表示される。サブユニットの上位区分も、α3β3-六量体として具体的に記述できる。.

新しい!!: 電子伝達系とサブユニット · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: 電子伝達系と光合成 · 続きを見る »

糖(とう)とは、多価アルコールの最初の酸化生成物であり、アルデヒド基 (−CHO) またはケトン基 (>C.

新しい!!: 電子伝達系と糖 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: 電子伝達系と細胞質 · 続きを見る »

細胞膜

動物細胞の模式図図中の皮のように見えるものが'''細胞膜'''、(1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 細胞膜(さいぼうまく、cell membrane)は、細胞の内外を隔てる生体膜。形質膜や、その英訳であるプラズマメンブレン(plasma membrane)とも呼ばれる。 細胞膜は細胞内外を単に隔てている静的な構造体ではなく、特異的なチャンネルによってイオンなどの低分子を透過させたり、受容体を介して細胞外からのシグナルを受け取る機能、細胞膜の一部を取り込んで細胞内に輸送する機能など、細胞にとって重要な機能を担っている。.

新しい!!: 電子伝達系と細胞膜 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: 電子伝達系と細胞核 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: 電子伝達系と真核生物 · 続きを見る »

生体膜

生体膜(せいたいまく)とは細胞や細胞小器官の有する、その外界との境界の膜のことで、特有の構造を持つ。厚さ7~10nm。種類は以下のようなものがある。.

新しい!!: 電子伝達系と生体膜 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 電子伝達系と生物 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 電子伝達系と生物学 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 電子伝達系と銅 · 続きを見る »

鞭毛

鞭毛(べんもう、英:flagellum)は毛状の細胞小器官で、遊泳に必要な推進力を生み出す事が主な役目である。構造的に真核生物鞭毛と真正細菌鞭毛、古細菌鞭毛とに分けられる。.

新しい!!: 電子伝達系と鞭毛 · 続きを見る »

解糖系

解糖系 解糖系(かいとうけい、Glycolysis)とは、生体内に存在する生化学反応経路の名称であり、グルコースをピルビン酸などの有機酸に分解(異化)し、グルコースに含まれる高い結合エネルギーを生物が使いやすい形に変換していくための代謝過程である。ほとんど全ての生物が解糖系を持っており、もっとも原始的な代謝系とされている。嫌気状態(けんきじょうたい、無酸素状態のこと)でも起こりうる代謝系の代表的なものである一方で、得られる還元力やピルビン酸が電子伝達系やクエン酸回路に受け渡されることで好気呼吸の一部としても機能する。.

新しい!!: 電子伝達系と解糖系 · 続きを見る »

高等学校

等学校(こうとうがっこう)は、日本における後期中等教育段階の学校。略して高校(こうこう)と呼ばれている。その名称から誤解されることもあるが、高等教育(ISCEDレベル5)を行う学校ではなく、後期中等教育段階(ISCEDレベル3)に相当する学校である。 1948年に発足した新制の高等学校は旧制の中学校、高等女学校、実業学校を改組再編したものである 国立教育政策研究所 2018年月14日閲覧。高等学校は中学校の教育を基礎とし、中学校の課程を修了した生徒に高度な普通教育および専門教育を施すことを目的とする。主に市民としての総合的な基礎教養、大学・専門学校など高等教育機関への進学準備、また就職に向けての技術・技能の習得の教育を行う。 新制の高等学校は小学区制・総合制・男女共学を原則としたものの前二者は実施には至らなかった。1990年代以降は中高一貫制の導入、単位制の実施、総合課程の導入など教育の多様化・柔軟化がみられる。 日本の高等学校の制度上の正式な英語表記はUpper Secondary Schoolである。一般には米国式のhigh schoolとの訳や、Senior high schoolとの訳(中学校のJunior high Schoolに対応した訳)もみられる。 なお、日本において学制改革後の1950年(昭和25年)まで存在した高等学校については、旧制高等学校を参照。.

新しい!!: 電子伝達系と高等学校 · 続きを見る »

超酸化物

超酸化物(ちょうさんかぶつ、superoxide)とは、スーパーオキシドアニオン(化学式: )を含む化学物質の総称である。自然界では酸素分子()の一電子還元により広範囲に生成している点が重要であり、1つの不対電子を持つ。スーパーオキシドアニオンは、二酸素と同様にフリーラジカルであり、常磁性を有する。一般に活性酸素と呼ばれる化学種の一種である。 ルイス式で表したスーパーオキシドアニオン。それぞれの酸素原子に存在する、6つの外殻電子を黒点で表している。周りにある電子対は2つの酸素原子に共有され、左上には不対電子があり、(イオン化の時に)付加した電子による負電荷は赤点で表す。.

新しい!!: 電子伝達系と超酸化物 · 続きを見る »

能動輸送

Na+/K+ ATPアーゼの模式図。Na+ を細胞外へ、K+ を細胞内へそれぞれくみ出している 能動輸送(のうどうゆそう)とは、細胞がアデノシン三リン酸 (ATP) の力を直接あるいは間接的に利用して物質を濃度勾配に逆らって輸送する作用である。.

新しい!!: 電子伝達系と能動輸送 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: 電子伝達系と葉緑体 · 続きを見る »

脱水素酵素

脱水素酵素(だっすいそこうそ、英:Dehydrogenase)とは、NAD+/NADP+やFADやFMNのようなフラビン補酵素により基質から1つあるいはそれ以上の数の水素(H)を奪い取って酸化する酵素のことである。.

新しい!!: 電子伝達系と脱水素酵素 · 続きを見る »

脂肪酸

脂肪酸(しぼうさん、Fatty acid)とは、長鎖炭化水素の1価のカルボン酸である。一般的に、炭素数2-4個のものを短鎖脂肪酸(低級脂肪酸)、5-12個のものを中鎖脂肪酸、12個以上のものを長鎖脂肪酸(高級脂肪酸)と呼ぶ。炭素数の区切りは諸説がある。脂肪酸は、一般式 CnHmCOOH で表せる。脂肪酸はグリセリンをエステル化して油脂を構成する。脂質の構成成分として利用される。 広義には油脂や蝋、脂質などの構成成分である有機酸を指すが、狭義には単に鎖状のモノカルボン酸を示す場合が多い。炭素数や二重結合数によって様々な呼称があり、鎖状のみならず分枝鎖を含む脂肪酸も見つかっている。また環状構造を持つ脂肪酸も見つかってきている。.

新しい!!: 電子伝達系と脂肪酸 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 電子伝達系と自由エネルギー · 続きを見る »

酸化ストレス

酸化ストレス(さんかストレス、Oxidative stress)とは活性酸素が産生され障害作用を発現する生体作用と、生体システムが直接活性酸素を解毒したり、生じた障害を修復する生体作用との間で均衡が崩れた状態のことである。生体組織の通常の酸化還元状態が乱されると、過酸化物やフリーラジカルが産生され、タンパク質、脂質そしてDNAが障害されることで、さまざまな細胞内器官が障害を受ける。 ヒトの場合、酸化ストレスは様々な疾患を引き起こす。たとえば、アテローム動脈硬化症、パーキンソン病、狭心症、心筋梗塞、アルツハイマー病、統合失調症、双極性障害、脆弱X症候群、慢性疲労症候群などに酸化ストレスが関与している。.

新しい!!: 電子伝達系と酸化ストレス · 続きを見る »

酸化的リン酸化

酸化的リン酸化(さんかてきリンさんか、oxidative phosphorylation)とは、電子伝達系に共役して起こる一連のリン酸化(ATP合成)反応を指す。細胞内で起こる呼吸に関連した現象で、高エネルギー化合物のATPを産生する回路の一つ。好気性生物における、エネルギーを産生するための代謝の頂点といわれ、糖質、脂質、アミノ酸などの代謝がこの反応に収束する。 反応の概要は、NADHやFADHといった補酵素の酸化と、それによる酸素分子(O2)の水分子(H2O)への還元である。反応式は であり、ATPシンターゼによって触媒される。ミトコンドリアの内膜とマトリックスに生じた水素イオンの濃度勾配のエネルギーを使って、ATP合成酵素によってADPをリン酸化してATPができる。 真核細胞内のミトコンドリア内膜の他に原核細胞の形質膜にも見られる反応でもある。ミッチェルの提唱した化学浸透圧説での反応機構が最も有力で、次に仮説されたように、電子伝達系によって膜の内外にプロトンの電気化学ポテンシャル差が形成され、これを利用してATP合成酵素(F0F1)が駆動し直接ATPを合成するとされる。脱共役剤は電子伝達系の反応とATP合成の反応の共役を阻害するもので、これを添加することにより電子伝達系が行われても酸化的リン酸化はおこらない。.

新しい!!: 電子伝達系と酸化的リン酸化 · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 電子伝達系と酸化還元反応 · 続きを見る »

酸化還元酵素

酸化還元酵素(さんかかんげんこうそ、oxidoreductase)とはEC第1群に分類される酵素で、酸化還元反応を触媒する酵素である。オキシドレダクターゼとも呼ばれる。生体内では多数の酸化還元酵素が知られており、約560種類ともいわれる。.

新しい!!: 電子伝達系と酸化還元酵素 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 電子伝達系と酸素 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 電子伝達系と酵素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 電子伝達系と鉄 · 続きを見る »

鉄・硫黄クラスター

鉄・硫黄クラスター(てつ・いおうクラスター、en:Iron-sulfur cluster)は鉄と硫黄からなるクラスターである。 鉄・硫黄クラスターは鉄・硫黄タンパク質が持つ生物学的機能を調べるなかでしばしば研究の対象とされてきた。有機金属化学の分野の中で、多くの鉄・硫黄クラスターが生物が持つクラスターの合成類似体として、あるいはその前駆体として知られている。(図参照).

新しい!!: 電子伝達系と鉄・硫黄クラスター · 続きを見る »

鉄硫黄タンパク質

鉄硫黄タンパク質(てついおうタンパクしつ、iron-sulfur protein)は、酸化数が可変の二、三および四鉄中心を含む鉄・硫黄クラスターの存在で特徴づけられるタンパク質である。鉄硫黄クラスターはフェレドキシンやNADPデヒドロゲナーゼ、ヒドロゲナーゼ、補酵素Qシトクロムcレダクターゼ、コハク酸デヒドロゲナーゼ、ニトロゲナーゼなど多くの金属タンパク質で見られる。最もよく知られる鉄硫黄クラスターの役割はミトコンドリアでの電子伝達にかかる酸化還元反応である。酸化的リン酸化の複合体Iおよび複合体IIはマルチプルな鉄硫黄クラスターを持つ。鉄硫黄タンパク質は他にものような触媒(SAM依存型酵素に見られるラジカル生成)、リポ酸とビオチンの生合成における硫黄供与体など多くの機能を持つ。加えて、いくつかの鉄硫黄タンパク質は遺伝子発現も調節している。鉄硫黄タンパク質は生命活動によって発生した一酸化炭素からの攻撃に脆弱である。.

新しい!!: 電子伝達系と鉄硫黄タンパク質 · 続きを見る »

英(えい、はなぶさ、はなふさ、〈名乗り:ひで〉).

新しい!!: 電子伝達系と英 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 電子伝達系と電子 · 続きを見る »

電子伝達体

電子伝達体(でんしでんたつたい)とは生体内における電子伝達反応を担う化合物の総称である。電子伝達体の多くには、補酵素、補欠分子族あるいはそれに含まれない多くの物質が含まれているが、その全てが電子を受け取る「酸化型」および電子を与える「還元型」の2つの状態を取る。また二電子還元を受けるものでは中間型(一電子還元型)も取り得る。別名水素伝達体、電子伝達物質など。.

新しい!!: 電子伝達系と電子伝達体 · 続きを見る »

電子伝達系

真核生物では、ミトコンドリアの電子伝達鎖は酸化的リン酸化の場となる。クエン酸回路で作られたNADHとコハク酸は酸化され、ATP合成酵素にエネルギーを与える。 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。.

新しい!!: 電子伝達系と電子伝達系 · 続きを見る »

電子移動反応

電子移動反応(でんしいどうはんのう)とは、狭義には一電子の移動が起こる反応であり、素反応の一つ。広義には、狭義の電子移動反応を鍵反応とするもの全てを指すことが多い。一般に、電子を与えるものを電子供与体(電子ドナー)と呼び、電子を受け取るものを電子受容体(電子アクセプター)と呼称する。酸化還元反応は、必然的に素反応として電子移動反応を含む。電子移動反応速度については基本的にマーカス・ハッシュ理論で説明され、ルドルフ・マーカスはこの業績により1992年度ノーベル化学賞を受賞している。 電子移動反応のうち、基底状態から進行する電子移動反応を熱電子移動、光励起状態から進行する電子移動反応を光電子移動という。 Category:化学反応 zh:電子轉移.

新しい!!: 電子伝達系と電子移動反応 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

新しい!!: 電子伝達系と電気陰性度 · 続きを見る »

NADH:ユビキノン還元酵素 (水素イオン輸送型)

NADH:ユビキノン還元酵素 (水素イオン輸送型) (NADH:ubiquinone reductase (H+-translocating)) は、NADHからユビキノン(CoQ)へ電子2つを転移させる酸化還元酵素であり、その際に生体膜の片側から反対側へと水素イオンを輸送する酵素である。ミトコンドリアの内膜や原核生物の細胞膜に位置し、プロトン濃度勾配を形成することでATP合成や膜電位の維持に寄与する。多数のペプチドから構成されるタンパク質複合体であり、酸化的リン酸化を行う呼吸鎖の“入り口酵素”の1つであることから、複合体Iとも呼ばれる。習慣的にNADH脱水素酵素(NADH dehydrogenase)と呼ばれることが多い。.

新しい!!: 電子伝達系とNADH:ユビキノン還元酵素 (水素イオン輸送型) · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 電子伝達系と水 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: 電子伝達系と水素イオン · 続きを見る »

日光

日光(にっこう)。.

新しい!!: 電子伝達系と日光 · 続きを見る »

ここにリダイレクトされます:

呼吸鎖呼吸鎖複合体水素伝達系電子伝達鎖

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »