ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

脱水素酵素

索引 脱水素酵素

脱水素酵素(だっすいそこうそ、英:Dehydrogenase)とは、NAD+/NADP+やFADやFMNのようなフラビン補酵素により基質から1つあるいはそれ以上の数の水素(H)を奪い取って酸化する酵素のことである。.

27 関係: 基質乳酸脱水素酵素ペントースリン酸経路リンゴ酸デヒドロゲナーゼリボフラビンピルビン酸ピルビン酸デヒドロゲナーゼフラビンアデニンジヌクレオチドニコチンアミドアデニンジヌクレオチドニコチンアミドアデニンジヌクレオチドリン酸アルデヒドデヒドロゲナーゼアルコールデヒドロゲナーゼアセチルCoAアセトアルデヒド脱水素酵素イソクエン酸デヒドロゲナーゼクエン酸回路グリセルアルデヒド-3-リン酸デヒドロゲナーゼ (NADP+)グルタミン酸グルタミン酸デヒドロゲナーゼコハク酸デヒドロゲナーゼ補酵素解糖系酸化酵素FMN水素

基質

基質 (きしつ)とは.

新しい!!: 脱水素酵素と基質 · 続きを見る »

乳酸脱水素酵素

乳酸脱水素酵素(にゅうさんだっすいそこうそ、lactate dehydrogenase; LDH)は、ほぼ全ての生物に存在する酵素である。.

新しい!!: 脱水素酵素と乳酸脱水素酵素 · 続きを見る »

ペントースリン酸経路

ペントースリン酸経路 ペントースリン酸経路(ペントースリンさんけいろ、pentose phosphate pathway: PPP)は、解糖系のグルコース-6-リン酸から出発して、同じく解糖系のグリセルアルデヒド-3-リン酸へとつながる経路で、NADPHや、デオキシリボース、リボースといった核酸の生合成に不可欠な糖を含む各種ペントースの産生に関与する。また、NADPHの供給源として脂質の生産にも関与している。ペントースリン酸経路によって、1分子のグルコース-6-リン酸から1分子のCO2と2分子のNADPHが生成される。肝臓、脂肪組織、精巣、副腎皮質、授乳期の乳腺においてペントースリン酸経路の活性は高い。.

新しい!!: 脱水素酵素とペントースリン酸経路 · 続きを見る »

リンゴ酸デヒドロゲナーゼ

リンゴ酸デヒドロゲナーゼまたはリンゴ酸脱水素酵素(malate dehydrogenase, MDH)は、リンゴ酸とオキサロ酢酸との相互変換を触媒する酸化還元酵素である。 用いる電子受容体によって以下の表のように分類されているほか、さらに脱炭酸してピルビン酸にするリンゴ酸酵素に対しても「リンゴ酸デヒドロゲナーゼ」と呼ぶことがある。 本項ではNAD依存型の酵素(EC 1.1.1.37)について記述する。 ---- リンゴ酸デヒドロゲナーゼまたはリンゴ酸脱水素酵素(malate dehydrogenase, MDH)は、リンゴ酸をオキサロ酢酸へと酸化する(またはその逆の)化学反応を触媒する酸化還元酵素である。クエン酸回路を構成する酵素の1つであり、また真核生物においてはリンゴ酸-アスパラギン酸シャトルに関与している。.

新しい!!: 脱水素酵素とリンゴ酸デヒドロゲナーゼ · 続きを見る »

リボフラビン

リボフラビン (Riboflavin) は、ビタミンB2 (Vitamin B2) 、ラクトフラビン(Lactoflavine)とも呼ばれ、ビタミンの中で水溶性ビタミンに分類される生理活性物質で、ヘテロ環状イソアロキサジン環に糖アルコールのリビトールが結合したものである。かつては成長因子 (growth factor) として知られていたことからビタミンGと呼ばれたこともある。.

新しい!!: 脱水素酵素とリボフラビン · 続きを見る »

ピルビン酸

ピルビン酸(ピルビンさん、Pyruvic acid)は有機化合物の一種で、示性式が CH3COCOOH と表されるカルボン酸である。IUPAC命名法では 2-オキソプロパン酸 (2-oxopropanoic acid) と表される。α-ケトプロピオン酸 (α-ketopropionic acid) あるいは焦性ブドウ酸 (pyroracemic acid) とも呼ばれる。水、エタノール、エーテルなど、さまざまな極性溶媒や無極性溶媒と任意な比率で混和する。酢酸に似た酸味臭を示す。2位のカルボニル基を還元すると乳酸となる。 生体内では解糖系による糖の酸化で生成する。 ピルビン酸デヒドロゲナーゼ複合体の作用により補酵素Aと結合するとアセチルCoAとなり、クエン酸回路や脂肪酸合成系に組み込まれる。 また、グルタミン酸からアミノ基を転移されるとアラニンになる。.

新しい!!: 脱水素酵素とピルビン酸 · 続きを見る »

ピルビン酸デヒドロゲナーゼ

ピルビン酸デヒドロゲナーゼ(pyruvate dehydrogenase, PDH)は、ピルビン酸のカルボキシ基を酸化して二酸化炭素を生じる反応を触媒する酸化還元酵素である。 用いる電子受容体によって以下の表のように分類されている。 また以下の酵素も名称は異なるが同様の反応を触媒する。 Category:酸化還元酵素.

新しい!!: 脱水素酵素とピルビン酸デヒドロゲナーゼ · 続きを見る »

フラビンアデニンジヌクレオチド

フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、FAD)は、いくつかの代謝反応に必要な酸化還元反応の補因子である。FADには2種の酸化還元状態が存在し、それらの生化学的役割は2種の間で変化する。FADは還元されることによって2原子の水素を受容し、FADH2となる。 FADH2はエネルギーキャリアであり、還元された補酵素はミトコンドリアでの酸化的リン酸化の基質として使われる。FADH2は酸化されてFADとなり、これは一般的なエネルギーキャリアのATPを2分子作ることが可能である。真核生物の代謝でのFADの一次供給源はクエン酸回路とβ酸化である。クエン酸回路では、FADはコハク酸をフマル酸に酸化するコハク酸デヒドロゲナーゼの補欠分子族である。一方、β酸化ではアシルCoAデヒドロゲナーゼの酵素反応の補酵素として機能する。 FADはリボフラビン(ビタミンB2)から誘導される。いくつかの酸化還元酵素はフラボ酵素またはフラビンタンパク質(フラボプロテイン)と呼ばれ、電子移動において機能する補欠分子族としてFADを要する。 Category:フラビン Category:ヌクレオチド Category:補因子.

新しい!!: 脱水素酵素とフラビンアデニンジヌクレオチド · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: 脱水素酵素とニコチンアミドアデニンジヌクレオチド · 続きを見る »

ニコチンアミドアデニンジヌクレオチドリン酸

ニコチンアミドアデニンジヌクレオチドリン酸(ニコチンアミドアデニンジヌクレオチドリンさん、)とは、光合成経路あるいは解糖系のエントナー-ドウドロフ経路などで用いられている電子伝達体である。化学式:C21H21N7O17P3、分子量:744.4。ニコチンアミドアデニンジヌクレオチドと構造上良く似ており、脱水素酵素の補酵素として一般的に機能している。略号であるNADP+(あるいはNADP)として一般的には良く知られている。酸化型 (NADP+) および還元型 (NADPH) の2つの状態を有し、二電子還元を受けるが中間型(一電子還元型)は存在しない。 かつては、トリホスホピリジンヌクレオチド (TPN)、補酵素III、コデヒドロゲナーゼIII、コエンザイムIIIなどと呼称されていたが、現在はNADP+に統一されている。別名、ニコチン酸アミドジヌクレオチドリン酸など。.

新しい!!: 脱水素酵素とニコチンアミドアデニンジヌクレオチドリン酸 · 続きを見る »

アルデヒドデヒドロゲナーゼ

アルデヒドデヒドロゲナーゼ (aldehyde dehydrogenase、ALDH) はアルデヒドを酸化してカルボン酸にする反応を触媒する酵素である。 生物に普遍的に存在し、ヒトには17種類のALDHファミリータンパク質が存在する。.

新しい!!: 脱水素酵素とアルデヒドデヒドロゲナーゼ · 続きを見る »

アルコールデヒドロゲナーゼ

アルコールデヒドロゲナーゼ (EC.1.1.1.1, EC.1.1.1.2, EC.1.1.1.71) はアルコールを酸化してアルデヒドにする反応を触媒する酵素。アルコール脱水素酵素とも呼ばれる。 人間の場合、少なくとも6種のアイソフォームが存在する。肝臓に多く存在し、エタノールを摂取した時に働く。 酵母のように、アルコール発酵する生物の場合、アセトアルデヒドをエタノールに還元する上記の逆反応が起きる。これによってNAD+が再生され、嫌気状態でも解糖系が続行できるようになる。酵母が作ったエタノールを、人間が全く逆の反応で戻していることになる。 ヒトではアルコール脱水素酵素は大部分が肝臓に存在し、少量が胃、腸、腎、網膜、脳に分布する。.

新しい!!: 脱水素酵素とアルコールデヒドロゲナーゼ · 続きを見る »

アセチルCoA

アセチルCoA (アセチルコエンザイムエー、アセチルコエー、Acetyl-CoA)は、アセチル補酵素Aの略で、化学式がC23H38P3N7O17Sで表される分子量が809.572 g/mol の有機化合物である。補酵素Aの末端のチオール基が酢酸とチオエステル結合したもので、主としてβ酸化やクエン酸回路、メバロン酸経路でみられる。テルペノイドはアセチルCoA二分子の反応によって生じるアセトアセチルCoAを原料とする。消費されない過剰のアセチルCoAは、脂肪酸生合成の原料となり、中性脂肪を生成する(脂肪酸#脂肪酸生合成系参照)。そのため、アセチルCoAの代謝を抑制することで動脈硬化、高脂血症を防ぐ研究が進行中である。.

新しい!!: 脱水素酵素とアセチルCoA · 続きを見る »

アセトアルデヒド脱水素酵素

アセトアルデヒド脱水素酵素(アセトアルデヒドだっすいそこうそ、ALDH; )は、摂取したエチルアルコールの代謝によって生じるアセトアルデヒドを、酢酸に分解する代謝酵素。アルデヒドデヒドロゲナーゼとも。アルデヒド脱水素酵素の一種。 飲酒により体内に入ったエチルアルコールは、胃や小腸から吸収され肝臓内のアルコール脱水素酵素によりアセトアルデヒドへと分解される(式1)。アセトアルデヒド脱水素酵素は肝臓内においてアセトアルデヒドを酢酸に分解する酵素である(式2)。 こののち、酢酸はさらに二酸化炭素と水に分解され、最終的に体外へと排出される。.

新しい!!: 脱水素酵素とアセトアルデヒド脱水素酵素 · 続きを見る »

イソクエン酸デヒドロゲナーゼ

イソクエン酸デヒドロゲナーゼ(isocitrate dehydrogenase, IDH)は、イソクエン酸と2-オキソグルタル酸とを相互変換する酸化還元酵素である。イソクエン酸デヒドロゲナーゼにはイソクエン酸デヒドロゲナーゼ (NAD+)(EC 1.1.1.41)と、イソクエン酸デヒドロゲナーゼ (NADP+)(EC 1.1.1.42)の2種が存在するがクエン酸回路を構成するのは前者の方である。 クエン酸回路を構成するイソクエン酸デヒドロゲナーゼ (NAD+)は二段階でイソクエン酸から2-オキソグルタル酸に変換している。まず、イソクエン酸(二級アルコール)のオキサロコハク酸(ケトン)への酸化をしたのち、続いてこのオキサロコハク酸のβ-カルボキシル基を脱炭酸することによりα-ケトグルタル酸へ変換される。 もう一方のイソクエン酸デヒドロゲナーゼ (NADP+)も同じ反応をするが、こちらの反応はクエン酸回路とは関係がなく、ミトコンドリア、ペルオキシソームと同様に細胞質基質で行われ、補因子もNAD+ではなくNADP+が使われる。.

新しい!!: 脱水素酵素とイソクエン酸デヒドロゲナーゼ · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: 脱水素酵素とクエン酸回路 · 続きを見る »

グリセルアルデヒド-3-リン酸デヒドロゲナーゼ (NADP+)

リセルアルデヒド-3-リン酸デヒドロゲナーゼ (NADP+)(glyceraldehyde-3-phosphate dehydrogenase (NADP+))は、解糖系/糖新生を構成する酵素で、次の化学反応を触媒する酸化還元酵素である。 反応式の通り、この酵素の基質はD-グリセルアルデヒド-3-リン酸とNADP+と水、生成物は3-ホスホ-D-グリセリン酸とNADPHとH+である。 組織名はD-glyceraldehyde-3-phosphate:NADP+ oxidoreductaseで、別名にtriosephosphate dehydrogenase, dehydrogenase, glyceraldehyde phosphate (nicotinamide adenine dinucleotide phosphate), glyceraldehyde phosphate dehydrogenase (NADP+), glyceraldehyde 3-phosphate dehydrogenase (NADP+), NADP+-glyceraldehyde phosphate dehydrogenase, NADP+-glyceraldehyde-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate:NADP+ reductase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (NADP+)がある。.

新しい!!: 脱水素酵素とグリセルアルデヒド-3-リン酸デヒドロゲナーゼ (NADP+) · 続きを見る »

グルタミン酸

ルタミン酸(グルタミンさん、glutamic acid, glutamate)は、アミノ酸のひとつで、2-アミノペンタン二酸のこと。2-アミノグルタル酸とも呼ばれる。Glu あるいは E の略号で表される。小麦グルテンの加水分解物から初めて発見されたことからこの名がついた。英語に準じ、グルタメートと呼ぶこともある。 酸性極性側鎖アミノ酸に分類される。タンパク質構成アミノ酸のひとつで、非必須アミノ酸。動物の体内では神経伝達物質としても機能しており、グルタミン酸受容体を介して神経伝達が行われる、興奮性の神経伝達物質である。 グルタミン酸が多くつながると、納豆の粘性物質であるポリグルタミン酸になる。 致死量はLD50.

新しい!!: 脱水素酵素とグルタミン酸 · 続きを見る »

グルタミン酸デヒドロゲナーゼ

ルタミン酸デヒドロゲナーゼ(glutamate dehydrogenase, GDH)は、多くの微生物および真核生物のミトコンドリアに存在する酵素である。尿素の合成に必須な酵素で、グルタミン酸とα-ケトグルタル酸の相互変換を行う。動物では酵素反応で発生したアンモニアは尿素回路に流れ着く。バクテリアではグルタミン酸とアミドトランスフェラーゼによりを経て同化される。植物では環境と圧力に依存してどちらの方向にもはたらく。トランスジェニック植物において発現するミトコンドリアGDHは除草剤、水不足、病原体感染に対する耐性が強化される。それらは栄養的価値が大きい。 グルタミン酸デヒドロゲナーゼは異化と代謝経路との間を繋ぐ酵素であり、真核生物の至るところに存在する。.

新しい!!: 脱水素酵素とグルタミン酸デヒドロゲナーゼ · 続きを見る »

コハク酸デヒドロゲナーゼ

ハク酸デヒドロゲナーゼ (succinate dehydrogenase, SDH)は、コハク酸をフマル酸へ酸化する酸化還元酵素である。コハク酸脱水素酵素とも。このとき同時にユビキノンなどのキノンを還元することから、コハク酸キノンレダクターゼ(succinate-quinone reductase, SQR)とも呼ばれる。クエン酸回路の8段階目の反応を担い、また呼吸鎖においては複合体II(Complex II)と呼ばれている。真核生物ではミトコンドリア内膜に、原核生物では細胞膜に固定されている酵素複合体である。。.

新しい!!: 脱水素酵素とコハク酸デヒドロゲナーゼ · 続きを見る »

補酵素

補酵素(ほこうそ、coenzyme)は、酵素反応の化学基の授受に機能する低分子量の有機化合物である。コエンザイム、コエンチーム、助酵素などとも呼ばれる。 一般に補酵素は酵素のタンパク質部分と強い結合を行わず可逆的に解離して遊離型になる(反対に不可逆的な解離を行うものは補欠分子族と呼ばれる)。補酵素の多くはビタミンとして良く知られており、生物の生育に関する必須成分(栄養素)として良く知られている。.

新しい!!: 脱水素酵素と補酵素 · 続きを見る »

解糖系

解糖系 解糖系(かいとうけい、Glycolysis)とは、生体内に存在する生化学反応経路の名称であり、グルコースをピルビン酸などの有機酸に分解(異化)し、グルコースに含まれる高い結合エネルギーを生物が使いやすい形に変換していくための代謝過程である。ほとんど全ての生物が解糖系を持っており、もっとも原始的な代謝系とされている。嫌気状態(けんきじょうたい、無酸素状態のこと)でも起こりうる代謝系の代表的なものである一方で、得られる還元力やピルビン酸が電子伝達系やクエン酸回路に受け渡されることで好気呼吸の一部としても機能する。.

新しい!!: 脱水素酵素と解糖系 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 脱水素酵素と酸化 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 脱水素酵素と酵素 · 続きを見る »

英(えい、はなぶさ、はなふさ、〈名乗り:ひで〉).

新しい!!: 脱水素酵素と英 · 続きを見る »

FMN

FMN.

新しい!!: 脱水素酵素とFMN · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 脱水素酵素と水素 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »