ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

鉄硫黄タンパク質

索引 鉄硫黄タンパク質

鉄硫黄タンパク質(てついおうタンパクしつ、iron-sulfur protein)は、酸化数が可変の二、三および四鉄中心を含む鉄・硫黄クラスターの存在で特徴づけられるタンパク質である。鉄硫黄クラスターはフェレドキシンやNADPデヒドロゲナーゼ、ヒドロゲナーゼ、補酵素Qシトクロムcレダクターゼ、コハク酸デヒドロゲナーゼ、ニトロゲナーゼなど多くの金属タンパク質で見られる。最もよく知られる鉄硫黄クラスターの役割はミトコンドリアでの電子伝達にかかる酸化還元反応である。酸化的リン酸化の複合体Iおよび複合体IIはマルチプルな鉄硫黄クラスターを持つ。鉄硫黄タンパク質は他にものような触媒(SAM依存型酵素に見られるラジカル生成)、リポ酸とビオチンの生合成における硫黄供与体など多くの機能を持つ。加えて、いくつかの鉄硫黄タンパク質は遺伝子発現も調節している。鉄硫黄タンパク質は生命活動によって発生した一酸化炭素からの攻撃に脆弱である。.

24 関係: 大腸菌一酸化炭素ミトコンドリアユビキノール-シトクロムcレダクターゼラジカル (化学)ヒドロゲナーゼヒスチジンビオチンフェレドキシンニトロゲナーゼキュバンコハク酸デヒドロゲナーゼシステインスティーブン・リパードタンパク質出芽酵母米国科学アカデミー紀要生物無機化学金属タンパク質酸化的リン酸化酸化還元反応酸化数鉄・硫黄クラスターS-アデノシルメチオニン

大腸菌

大腸菌(だいちょうきん、学名: Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特にヒトなどの場合大腸に生息する。アルファベットで短縮表記でとすることがある(詳しくは#学名を参照のこと)。大きさは通常短軸0.4-0.7μm、長軸2.0-4.0μmだが、長軸が短くなり球形に近いものもいる。 バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで化学物質の生産にも利用される(下図)。 大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。.

新しい!!: 鉄硫黄タンパク質と大腸菌 · 続きを見る »

一酸化炭素

一酸化炭素(いっさんかたんそ、carbon monoxide)は、炭素の酸化物の1種であり、常温・常圧で無色・無臭・可燃性の気体である。一酸化炭素中毒の原因となる。化学式は CO と表される。.

新しい!!: 鉄硫黄タンパク質と一酸化炭素 · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: 鉄硫黄タンパク質とミトコンドリア · 続きを見る »

ユビキノール-シトクロムcレダクターゼ

ユビキノール-シトクロムcレダクターゼ(ubiquinol-cytochrome-c reductase)またはシトクロムbc 1複合体(cytochrome bc 1 complex)もしくは単に複合体III(complex III)は、電子伝達系の3番目の複合体で、生化学的なATP合成(酸化的リン酸化)において重要な役割を担っている。複合体IIIは、ミトコンドリア遺伝子(シトクロムb)と核遺伝子(それ以外のサブユニット)の両方にコードされているマルチサブユニット膜貫通リポタンパク質である。複合体IIIは、全ての動物のミトコンドリア、全ての好気性真核生物、およびほとんどの真性細菌の内膜に存在する。複合体IIIの突然変異は、多系統疾患や運動耐容能低下の原因となる。.

新しい!!: 鉄硫黄タンパク質とユビキノール-シトクロムcレダクターゼ · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 鉄硫黄タンパク質とラジカル (化学) · 続きを見る »

ヒドロゲナーゼ

ヒドロゲナーゼ (hydrogenase) は、分子型水素 (H2) の可逆的な酸化還元反応を触媒する酵素である。この酵素は嫌気性代謝において重要な役割を果たしている。.

新しい!!: 鉄硫黄タンパク質とヒドロゲナーゼ · 続きを見る »

ヒスチジン

ヒスチジン (histidine) はアミノ酸の一種で2-アミノ-3-(1H-イミダゾ-4-イル)プロピオン酸のこと。名前はギリシャ語で「組織」という意味。 塩基性アミノ酸の一種で、必須アミノ酸。糖原性を持つ。側鎖にイミダゾイル基という複素芳香環を持ち、この部分の特殊な性質により酵素の活性中心や、蛋白質分子内でのプロトン移動に関与している。蛋白質中では金属との結合部位となり、あるいは水素結合やイオン結合を介してとしてその高次構造の維持に重要な役割を果たしている。 ヒスタミンおよびカルノシン生合成の前駆体でもある。.

新しい!!: 鉄硫黄タンパク質とヒスチジン · 続きを見る »

ビオチン

ビオチン(biotin)とは、D- のこと。ビタミンB群に分類される水溶性ビタミンの一種で、ビタミンB7(Vitamin B7)とも呼ばれるが、欠乏症を起こすことが稀なため、単にビオチンと呼ばれることも多い。.

新しい!!: 鉄硫黄タンパク質とビオチン · 続きを見る »

フェレドキシン

フェレドキシン は、内部に鉄-硫黄クラスター (Fe-Sクラスター) を含む鉄硫黄タンパク質の一つであり、電子伝達体として機能する。ヘムを含まない非ヘムタンパク質(他にルブレドキシン、高電位鉄-硫黄タンパク質など)のひとつであり、動物から原核生物まで広く分布する。光合成、窒素固定、炭酸固定、水素分子の酸化還元など主要な代謝系に用いられる。酸化還元電位 (E0') は−0.43V。略号はFdである。 比較的小さなタンパク質であるために、エドマン分解法などで古くからアミノ酸配列が調べられ、生物の系統解析などに使用されていた。しかしながら現在は情報量が少ないこともあいまって系統解析に使用されることはない。.

新しい!!: 鉄硫黄タンパク質とフェレドキシン · 続きを見る »

ニトロゲナーゼ

ニトロゲナーゼ (nitrogenase, EC 1.18.6.1) はリゾビウム (''Rhizobium'') 属(根粒菌)など窒素固定を行う細菌が持っている酵素。大気中の窒素をアンモニアに変換する反応を触媒する。全体構造は活性中心を有するニトロゲナーゼ二量体およびニトロゲナーゼ二量体に電子を供与するニトロゲナーゼ還元酵素からなる。極めて酸素に弱く、酸素に触れると数分間で不可逆的に失活する。そのため、本酵素を有する生物にはそれぞれ空気中の酸素からニトロゲナーゼを隔離する機構が見られる。.

新しい!!: 鉄硫黄タンパク質とニトロゲナーゼ · 続きを見る »

キュバン

ュバン (cubane) は 8個の炭素原子が立方体の各頂点に配置され、それぞれの炭素原子に水素原子が1個ずつ結合した構造を持つ炭化水素分子である。分子式はC8H8、IUPAC命名法ではペンタシクロオクタン、CAS登録番号は 。 無色透明の結晶で、融点130–131 ℃、200 ℃以上で分解する。キュバンはの1つで、プリズマン類の一員である。 炭素原子同士の結合角が90° に近く、これはsp3炭素で理想的な109.5° から大きく離れるためひずみエネルギーが大きい。そのため非常に不安定な化合物とされ、合成は不可能と考えられていたが、1964年にシカゴ大学の教授フィリップ・イートンによって初めての合成が達成された。実際に合成されると、キュバンは速度論的にかなり安定な結晶であることが分かった。これは、すぐに利用できる分解経路がないためである。今日ではさらに多くの合成法が開発されている。キュバンは八面体形対称性を有する最も単純な炭化水素である。 かなりひずんだ骨格のために大きなエネルギーを内包しており、炭化水素の中でも密度が最大であるため、高密度、高エネルギーの燃料としての有用性が期待されている。 8個の水素原子をすべてニトロ化したオクタニトロキュバンは現在理論的に考えられる最強の爆薬であるとされるが、現段階ではその合成にはかなりのコストと手間がかかるため、実用的ではない。 キュバンを多数つなげたポリマーも作り出されており、非常に頑丈な繊維である。 炭素以外にも、炭素族元素であるケイ素やゲルマニウム、スズなどでもキュバン同様の立方体分子が合成されている。ただし、これらの元素同士の結合は酸素などと反応しやすいため、周りを大きな置換基で覆うことにより初めて安定に取り出すことが可能となった。例として、オクタテキシルオクタシラキュバン (octathexyloctasilacubane, Si8(Me2CHCMe2)8) がある。 キュバンの全合成.

新しい!!: 鉄硫黄タンパク質とキュバン · 続きを見る »

コハク酸デヒドロゲナーゼ

ハク酸デヒドロゲナーゼ (succinate dehydrogenase, SDH)は、コハク酸をフマル酸へ酸化する酸化還元酵素である。コハク酸脱水素酵素とも。このとき同時にユビキノンなどのキノンを還元することから、コハク酸キノンレダクターゼ(succinate-quinone reductase, SQR)とも呼ばれる。クエン酸回路の8段階目の反応を担い、また呼吸鎖においては複合体II(Complex II)と呼ばれている。真核生物ではミトコンドリア内膜に、原核生物では細胞膜に固定されている酵素複合体である。。.

新しい!!: 鉄硫黄タンパク質とコハク酸デヒドロゲナーゼ · 続きを見る »

システイン

テイン (cysteine、2-アミノ-3-スルファニルプロピオン酸) はアミノ酸の1つ。チオセリンとも言う。天然にはL-システインとして、食品中タンパク質に含まれるが、ヒトでは必須アミノ酸ではなくメチオニンから生合成される。食品添加剤として利用され、また俗に肌のシミを改善するといったサプリメントが販売されている。日本国外で商品名Acetiumの除放剤は、胃の保護また、飲酒時などのアセトアルデヒドするために開発され販売されている。 側鎖にメルカプト基を持つ。酸性条件下では安定だが、中・アルカリ性条件では、微量の重金属イオンにより容易に空気酸化され、シスチンとなる。略号は C や Cys。酸化型のシスチンと対比し、還元型であることを明らかにするために CySH と記されることもある。.

新しい!!: 鉄硫黄タンパク質とシステイン · 続きを見る »

スティーブン・リパード

ティーブン・リパード(Stephen J. Lippard, 1940年10月12日 - )は、アメリカ合衆国の生物無機化学者。マサチューセッツ工科大学教授。ペンシルベニア州ピッツバーグ出身。.

新しい!!: 鉄硫黄タンパク質とスティーブン・リパード · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 鉄硫黄タンパク質とタンパク質 · 続きを見る »

出芽酵母

出芽酵母(しゅつがこうぼ, 英語: budding yeast)は出芽によって増える酵母の総称であるが、普通は Saccharomyces cerevisiae をさす。.

新しい!!: 鉄硫黄タンパク質と出芽酵母 · 続きを見る »

米国科学アカデミー紀要

『米国科学アカデミー紀要』(英語:Proceedings of the National Academy of Sciences of the United States of America、略称:PNAS または Proc.

新しい!!: 鉄硫黄タンパク質と米国科学アカデミー紀要 · 続きを見る »

生物無機化学

生物無機化学(せいぶつむきかがく、、)は、生体内における無機物の役割を研究する無機化学の一分野。生化学の一分野として無機生化学(むきせいかがく)と呼ばれることもある。主に生体中の金属イオンを扱う。 生物無機化学では、X線結晶構造解析を始めとする様々な分光法を用いて、生化学、無機化学、熱化学、物理化学、錯体化学などと関わりながら研究している。研究の成果は薬学や毒性学などへ応用される。.

新しい!!: 鉄硫黄タンパク質と生物無機化学 · 続きを見る »

金属タンパク質

金属タンパク質(きんぞくタンパクしつ、Metalloprotein)は、補因子として金属を含むタンパク質を表す用語である。金属は単独のイオンかあるいはタンパク質以外のポルフィリンなどの有機化合物に配位して存在している。タンパク質の側鎖や非金属無機イオンに配位している場合もある。このようなタンパク質-金属-非金属の構造は鉄-硫黄クラスターなどでも見られる。 金属タンパク質の内重要なものに金属酵素がある。これは、その活性中心の中に1つか2つの金属原子を含むものである。このような金属は、炭酸脱水酵素やシトクロムcオキシダーゼの場合のように触媒活性に関わっていることもしばしばある。金属イオンは通常複数の配位をして活性部位の一部となり、孤立電子対によって基質との高い親和性を作っている。.

新しい!!: 鉄硫黄タンパク質と金属タンパク質 · 続きを見る »

酸化的リン酸化

酸化的リン酸化(さんかてきリンさんか、oxidative phosphorylation)とは、電子伝達系に共役して起こる一連のリン酸化(ATP合成)反応を指す。細胞内で起こる呼吸に関連した現象で、高エネルギー化合物のATPを産生する回路の一つ。好気性生物における、エネルギーを産生するための代謝の頂点といわれ、糖質、脂質、アミノ酸などの代謝がこの反応に収束する。 反応の概要は、NADHやFADHといった補酵素の酸化と、それによる酸素分子(O2)の水分子(H2O)への還元である。反応式は であり、ATPシンターゼによって触媒される。ミトコンドリアの内膜とマトリックスに生じた水素イオンの濃度勾配のエネルギーを使って、ATP合成酵素によってADPをリン酸化してATPができる。 真核細胞内のミトコンドリア内膜の他に原核細胞の形質膜にも見られる反応でもある。ミッチェルの提唱した化学浸透圧説での反応機構が最も有力で、次に仮説されたように、電子伝達系によって膜の内外にプロトンの電気化学ポテンシャル差が形成され、これを利用してATP合成酵素(F0F1)が駆動し直接ATPを合成するとされる。脱共役剤は電子伝達系の反応とATP合成の反応の共役を阻害するもので、これを添加することにより電子伝達系が行われても酸化的リン酸化はおこらない。.

新しい!!: 鉄硫黄タンパク質と酸化的リン酸化 · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 鉄硫黄タンパク質と酸化還元反応 · 続きを見る »

酸化数

酸化数(さんかすう、英: Oxidation number)とは、対象原子の電子密度が、単体であるときと比較してどの程度かを知る目安の値である。1938年に米国のウェンデル・ラティマー (Wendell Mitchell Latimer) が考案した。 酸化とはある原子が電子を失うことであるから、単体であったときより電子密度が低くなっている。それに対して還元とはある原子が電子を得ることであるから、単体であったときより電子密度が高くなっている。 ある原子が酸化状態にある場合、酸化数は正の値をとり、その値が大きいほど電子不足の状態にあることを示す。逆に還元状態にある場合には負の数値をとり、その値が大きいほど電子過剰の状態にあることを示す。 酸化数はローマ数字で記述するのが通例である。.

新しい!!: 鉄硫黄タンパク質と酸化数 · 続きを見る »

鉄・硫黄クラスター

鉄・硫黄クラスター(てつ・いおうクラスター、en:Iron-sulfur cluster)は鉄と硫黄からなるクラスターである。 鉄・硫黄クラスターは鉄・硫黄タンパク質が持つ生物学的機能を調べるなかでしばしば研究の対象とされてきた。有機金属化学の分野の中で、多くの鉄・硫黄クラスターが生物が持つクラスターの合成類似体として、あるいはその前駆体として知られている。(図参照).

新しい!!: 鉄硫黄タンパク質と鉄・硫黄クラスター · 続きを見る »

S-アデノシルメチオニン

S-アデノシルメチオニン(S‐adenosylmethionine、SAM、SAM-e)とは、アデノシンとメチオニンとから生体内で合成される生体内物質である。補欠分子族の一種でメチル基供与体として作用する。活性メチオニン(active methionine)とも呼ばれる。略号はSAMまたはAdoMet。 アデノシンとメチオニンとはメチルスルホニウム結合を介して連結しているが、このメチルスルホニウム結合は高エネルギー結合であり、このメチル基がコリン・クレアチニンなどのメチル化合物生成に利用される。メチル基を失ったS-アデノシルメチオニンはS-アデノシル-L-ホモシステイン(SAH)となる。 動物では肝臓においてメチオニントランスアデニラーゼによりL‐メチオニンとATPから生成される。S-アデノシルメチオニンはポリアミン代謝の重要な中間体であり、脱炭酸反応によりアミノプロピル体となった後、プトレシンに付加するとスペルミジンが生成する。スペルミジンはアミノブチル基に付加してスペルミンとなる。 植物においては、S-アデノシルメチオニンからシクロプロパンカルボン酸を経由して植物ホルモンであるエチレンが産生する。.

新しい!!: 鉄硫黄タンパク質とS-アデノシルメチオニン · 続きを見る »

ここにリダイレクトされます:

鉄-硫黄タンパク質鉄・硫黄タンパク質

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »