ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

数字根

索引 数字根

数字根(すうじこん、digital root)とは、正の整数値の各位の和(数字和)を求め、結果の数字和を求め、という操作を繰り返し、最終的に得られる 1 桁の数を指す。 例えば、65536 の数字根は 7 である。(6 + 5 + 5 + 3 + 6.

20 関係: 加法半群完全数対称性三角数九去法九九平方数位取り記数法チェックサムパターン倍数立方数素数階乗自然数数字和整数整数の合同2の冪

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 数字根と加法 · 続きを見る »

半群

数学における半群(はんぐん、semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群はの基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている 。.

新しい!!: 数字根と半群 · 続きを見る »

完全数

完全数(かんぜんすう,)とは、自分自身を除く正の約数の和に等しくなる自然数のことである。完全数の最初の3個は、、 である。「完全数」は「万物は数なり」と考えたピタゴラスが名付けた数の一つであることに由来する「高数・数学者列伝」吉永良正『高校への数学』vol.20、8月号が、彼がなぜ「完全」と考えたのかについては何も書き残されていないようである。中世の『聖書』の研究者は、「 は「神が世界を創造した(天地創造)6日間」、 は「月の公転周期」で、これら2つの数は地上と天界における神の完全性を象徴している」と考えたとされる。古代ギリシアの数学者は他にもあと2つの完全数 を知っていた。以来、完全数はどれだけあるのかの探求が2500年以上のちの現在まで続けられている。 完全数の定義は、正の約数の総和が自分自身の2倍に等しいことと同値である。すなわち、 が完全数であるとは、約数関数 に対して が成り立つことであると表現できる。また、正の約数の逆数和が であると表現することもできる。.

新しい!!: 数字根と完全数 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 数字根と対称性 · 続きを見る »

三角数

三角数(さんかくすう、)とは多角数の一種で、正三角形の形に点を並べたときにそこに並ぶ点の総数のことである。番目の三角数は から までの自然数の和に等しい。.

新しい!!: 数字根と三角数 · 続きを見る »

九去法

九去法(きゅうきょほう、くきょほう、casting out nines)とは、整数の四則演算の検算の一種である。入力と出力の数字根を求めることで、その計算が正しいかどうかを確認するテストになる。非常に単純な方法なので、その数学的意味を理解できなくても活用可能である。.

新しい!!: 数字根と九去法 · 続きを見る »

九九

算数における九九(くく)とは自然数の乗法などの計算を表にまとめて語呂よく暗記する方法のことである。足し算九九や引き算九九や掛け算九九や割り算九九があるが、単に九九という場合は、普通1桁同士の掛け算九九を指す。また除数が1桁の割り算九九を八算(はっさん)、二桁を見一などという。.

新しい!!: 数字根と九九 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 数字根と平方数 · 続きを見る »

位取り記数法

位取り記数法(くらいどりきすうほう)、もしくは「N 進法」とは数の表現方法の一種で、予め定められたN 種類の記号(数字)を列べることによって数を表す方法である。(位取りのことを桁ともいう。) 今日の日本において通常使われているのは、 N が十のケースである十進法であるが、コンピューターでは二進法、八進法、十六進法なども用いられる。また歴史的には、十進法が世界的に広まったのはフランス革命の革命政府がメートル法とともに十進法を定めて以来であり、それ以前は国や分野により、様々な N に対する N 進法が用いられていた。 本項ではN が自然数の場合を扱う。それ以外の場合については広義の記数法の記事を参照のこと。また 後述する''p''進数の概念とは(関連があるものの)別概念であるので注意が必要である。.

新しい!!: 数字根と位取り記数法 · 続きを見る »

チェックサム

チェックサム (Check Sum)とは誤り検出符号の一種である。符号値そのものを指すこともある。他の誤り検出符号と比べて信頼性は低いが、それでも単純計算で99.5%以上(1オクテットのチェックサムの場合255/256、2オクテットなら65535/65536)の検出率がある上にアルゴリズムが簡単であることから、簡易な誤り検出に用いられる。 また、誤り検出その他データの検証のための符号として広く使われてきた経緯から、俗に誤り検出符号自体の代名詞としても用いられる場合がある。例えばCRCの符号値やMD5のハッシュ値を、それぞれ「CRCチェックサム」「MD5チェックサム」と呼ぶことがある。これらはアルゴリズムが異なりsumでもないため「チェックサム」と呼ぶことは、語義的には正確ではないものの、「(チェックサムよりも)信頼性の高い誤り検出符号」程度の意味で使われる。.

新しい!!: 数字根とチェックサム · 続きを見る »

パターン

パターン(pattern、 パタン)は、模範、手本、模様、体系などに翻訳される英単語のカナ表記。 ファッションデザインにおいてはその原型をおこす型紙、もしくは原型自体を差す。.

新しい!!: 数字根とパターン · 続きを見る »

倍数

数学において、数 の倍数(ばいすう、英:multiple)とは、 を整数倍した数、あるいはそれらの総称である。つまり、 を指す。 ならば、 の倍数は無数に存在する。 を整数に限ると、 の倍数とは「 で割り切れる整数」のことであり、 の約数(「 を割り切る整数」)と対比されることも多いが、倍数は が整数でなくても定義できる。 倍数の中で 以外は符号の違いだけの組が現れるので、 と表すこともある。とくに が正の整数で負の数を考えない、あるいは本質的でない場合は(正の)倍数として だけを考えることも多い。 整数全体からなる集合 \mathbb を用いると、 の倍数は a\mathbb である。.

新しい!!: 数字根と倍数 · 続きを見る »

立方数

立方数(りっぽうすう、cubic number)とは、ある数 n の三乗(立方)となる数である。例えば 125 は 53 であるので立方数である。自然数の最小の立方数は 1 であり、小さい順に列記すると 個数が立方数である点を縦、横、高さの三方向に等間隔に並べることで正六面体(立方体)の形を作れることから、「六面数」と呼ばれることもある。例えば216個の点は縦、横、高さの一辺にそれぞれ6個ずつ並べることで正六面体の形を作ることができる。.

新しい!!: 数字根と立方数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 数字根と素数 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: 数字根と階乗 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 数字根と自然数 · 続きを見る »

数字和

数字和(すうじわ、digit sum)とは、正の整数の各桁の数字を加算した値を意味する。一般的には「各位の和」という表現で用いられている。 例えば、84001 の数字和は 8 + 4 + 0 + 0 + 1.

新しい!!: 数字根と数字和 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 数字根と整数 · 続きを見る »

整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

新しい!!: 数字根と整数の合同 · 続きを見る »

2の冪

2の冪(にのべき)は、適当な自然数 n を選べば、2 の n 乗 2n の形に表せる自然数の総称である。平たく言うと2の累乗数(にのるいじょうすう)である。.

新しい!!: 数字根と2の冪 · 続きを見る »

ここにリダイレクトされます:

Digital root

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »