ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

整数の合同

索引 整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

36 関係: 加法単位元単位元単位的環反射関係反数同値同値関係合同算術合同記号合同関係奪格対称関係平方剰余の相互法則交換法則互いに素代数学ツェラーの公式フェルマーの小定理分配法則イデアル (環論)オイラーの定理 (数論)オイラーのφ関数カール・フリードリヒ・ガウス剰余環剰余類環結合法則Disquisitiones Arithmeticae関係 (数学)除法除法の原理暗号理論推移関係数学数論整域整数

加法単位元

数学、とくに抽象代数学における加法単位元(かほうたんいげん、additive identity)は、加法を演算として備える集合において、ほかのどのような元 x に加えても x が変化しない特別の元である。最もよく馴染みのある加法単位元のひとつとしては初等数学で扱う数の 0 が挙げられるが、加法単位元の概念はもっと多くの、加法が定義される数学的構造(たとえば加法群や環)に対して定義されるものである。環などにおける加法単位元はしばしば零元と呼ばれる。.

新しい!!: 整数の合同と加法単位元 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 整数の合同と単位元 · 続きを見る »

単位的環

数学、特に環論における単位的環(たんいてきかん、unital/unitary ring)、単位環(たんいかん、unit ring)あるいは単位元持つ環 (ring with unit/unity/identity) は、乗法単位元を持つ環のことを言う。.

新しい!!: 整数の合同と単位的環 · 続きを見る »

反射関係

反射関係(はんしゃかんけい、reflexive relation)は、数学における二項関係の一種。二項関係には反射性 (reflexivity) のものと非反射性 (irreflexivity) のものがある。なお、ここでの(二項)関係は X × X という形式であり、集合 X からそれ自身への関係である。.

新しい!!: 整数の合同と反射関係 · 続きを見る »

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

新しい!!: 整数の合同と反数 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 整数の合同と同値 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 整数の合同と同値関係 · 続きを見る »

合同算術

数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で))自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones Arithmeticae』を出版する1801年にまで遡れるものとされる。ガウスによる合同を用いたこの新しい手法は、有名な平方剰余の相互法則を明らかにし、より抽象的な観点からウィルソンの定理などの定理の記述の簡素化に一役を買った。ガウスの研究は自然数を扱う整数論のみならず、代数学や幾何学といった数学のほかの主要な分野にまで影響を与えるものであった。 かんたんな時刻の計算は「時間」については 12 あるいは 24 を法とする、「分・秒」については 60 を法とする合同算術になっている。合同算術はあたかも法 ''n'' を「周期」として循環あるいは回転しているかのようである。 この手法の基本は、「数それ自体」ではなくそれを別な数で割った(商がいくらになるかということは無視して)「剰余だけ」を考えるということにある。こういった考え方は何か特殊で高尚なものというようなものではなく、実際に日常生活においても時刻や角度といったものの計算や単位の換算などで、ちょっとした合同算術が特別な知識無くあるいは無意識に行われているのである。 20世紀には、合同算術にまつわる状況は大きく様変わりをしている。計算機やウェブの普及に伴って情報セキュリティの観点からの暗号化アルゴリズムの開発や取り扱いといったような場面で古典的な合同算術に関する理論の工業的・商業的応用が頻繁に見られるようになった。.

新しい!!: 整数の合同と合同算術 · 続きを見る »

合同記号

合同記号(ごうどうきごう)は、元来、合同式の合同(モジュロ)を表すための記号であり、「≡」が使われる。 記号「≡」は、それ以外に、以下の意味.

新しい!!: 整数の合同と合同記号 · 続きを見る »

合同関係

抽象代数学において、合同関係 (congruence relation)(あるいは単に合同 (congruence))は(群、環、あるいはベクトル空間のような)代数的構造上の、その構造と協調的な同値関係である。すべての合同関係は対応する構造を持ち、その元はその関係の同値類(あるいは合同類 (congruence class))である。.

新しい!!: 整数の合同と合同関係 · 続きを見る »

奪格

奪格(だっかく、ablative case、casus ablativus)は、名詞の格の一つで、主に起点・分離(~から)を示す。従格、離格ともいう。 古典ギリシア語では属格に吸収されたが、ラテン語では処格・具格を吸収して、手段(~によって)等を始とする多彩な用法をもち、さらに絶対奪格 (ablativus absolutus) という独自の用法をも発展させた。ギリシア語に存在しないこの格を、ローマ人は「われらの格」と呼んで誇った。 Category:格.

新しい!!: 整数の合同と奪格 · 続きを見る »

対称関係

対称関係(たいしょうかんけい、Symmetric relation)は、数学における二項関係の一種。集合 X における二項関係 R が「対称」であるとは、X に属する全ての a および b について、aRb が成り立つなら bRa も成り立つことをいう。 数学的に記述すると次のようになる。 対称関係と反対称関係(aRb かつ bRa ならば b.

新しい!!: 整数の合同と対称関係 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 整数の合同と平方剰余の相互法則 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 整数の合同と交換法則 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 整数の合同と互いに素 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 整数の合同と代数学 · 続きを見る »

ツェラーの公式

ツェラーの公式(ツェラーのこうしき、Zeller's congruence)とは西暦(グレゴリオ暦またはユリウス暦)の年・月・日から、その日が何曜日であるかを算出する公式である。クリスティアン・ツェラー が考案した。ユリウス通日を求め、そこから曜日を求める計算と本質は同じである。.

新しい!!: 整数の合同とツェラーの公式 · 続きを見る »

フェルマーの小定理

数論において、フェルマーの小定理(フェルマーのしょうていり、Fermat's little theorem)は素数の性質についての定理であり、実用としてもRSA暗号に応用されている定理である。.

新しい!!: 整数の合同とフェルマーの小定理 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 整数の合同と分配法則 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 整数の合同とイデアル (環論) · 続きを見る »

オイラーの定理 (数論)

数論において、オイラーの定理(Euler's theorem)は初等整数論の最も基本的な定理の一つである。.

新しい!!: 整数の合同とオイラーの定理 (数論) · 続きを見る »

オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

新しい!!: 整数の合同とオイラーのφ関数 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 整数の合同とカール・フリードリヒ・ガウス · 続きを見る »

剰余環

数学の一分野、環論における商環(しょうかん、quotient ring)、剰余環(じょうよかん、factor ring)あるいは剰余類環(じょうよるいかん、residue class ring)とは、群論における剰余群や線型代数学における商線型空間に類似した環の構成法およびその構成物である。すなわち、はじめに環 R とその両側イデアル I が与えられたとき、剰余環 R/I と呼ばれる新しい環が、I の全ての元が零元に潰れる(I による違いを「無視」するともいえる)ことで得られる。 注意: 剰余環は商環とも呼ばれるけれども、整域に対する商体(分数の体)と呼ばれる構成とは異なるし、全商環(商の環、これは環の局所化の一種)とも異なる。.

新しい!!: 整数の合同と剰余環 · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: 整数の合同と剰余類環 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 整数の合同と結合法則 · 続きを見る »

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae(ディスクィジティオネス・アリトメティカエ、ラテン語で算術研究の意、以下 D. A. と略す)は、カール・フリードリヒ・ガウス唯一の著書にして、後年の数論の研究に多大な影響を与えた書物である。1801年、ガウス24歳のときに公刊された。その研究の端緒はガウス17歳の1795年にまでさかのぼり、1797年にはほぼ原稿は完成していた。 ラテン語の arithmetica(アリトメティカ)は通常「算術」と訳されるが、ガウスの意図したものは、今日「数論」もしくは「整数論」と呼ばれる学術的領域である高瀬 1995、pp.

新しい!!: 整数の合同とDisquisitiones Arithmeticae · 続きを見る »

関係 (数学)

集合 X1, …, Xk 上の関係 L とは、それらの直積の部分集合 L ⊆ X1 × … × Xk である。 関係は集合の個数 k により分類される。 集合 X1, …, Xk は定義域と呼ばれる。すべての Xj が同じ集合 X のとき、L を X 上の k 項関係と呼ぶ。.

新しい!!: 整数の合同と関係 (数学) · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 整数の合同と除法 · 続きを見る »

除法の原理

数学の特に算術において、自然数や整数に対する通常の剰余付き除法(じょうよつきじょほう、division with remainder; 余りのある割り算)は、ユークリッド除法(ユークリッドじょほう、Euclidean division)または整除法(せいじょほう、entire division)とも呼ばれ、「被除数と除数と呼ばれる二つの自然数に対して、商と剰余と呼ばれる二つの自然数が、与えられた性質を満たして一意的に存在する」ことを主張する定理として明確に規定することができる。このような定理を「除法の原理」(じょほうのげんり、division algorithm; 除法の算法)という。即ち、その主張は「二つの自然数 n および m ≠ 0 に対してある自然数 a および b が存在して n.

新しい!!: 整数の合同と除法の原理 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 整数の合同と暗号理論 · 続きを見る »

推移関係

推移関係(すいいかんけい、Transitive relation)は、数学における二項関係の一種。集合 X の二項関係 R が推移的であるとは、Xの任意の元 a、b、c について、a と b に R が成り立ち、b と c に R が成り立つとき、a と c にも R が成り立つことをいう。推移的関係とも。 一階述語論理でこれを表すと、次のようになる。.

新しい!!: 整数の合同と推移関係 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 整数の合同と数学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 整数の合同と数論 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 整数の合同と整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 整数の合同と整数 · 続きを見る »

ここにリダイレクトされます:

モジュラ算術モジュロモジュロー位数 (数論)合同 (整数)合同式剰余計算

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »