ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

階乗

索引 階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

99 関係: $ABC予想偶数半整数収束級数反復合成写像同値合成数多項式函数多重指数完全順列巨大数三角数交互階乗二項定理二項係数代数学微分微分積分学マンジュル・バルガヴァネイピア数バーンズのG関数ランダウの記号リーマンゼータ関数リウヴィル数ルジャンドルの公式レオンハルト・オイラーボーア・モレルップの定理トーマス・スティルチェスプロシージャテイラー展開デデキント環ディガンマ関数ファクトリオンドナルド・クヌース分数命題イデアル (環論)ウィルソンの定理オーバーフローオイラーの定数カール・フリードリヒ・ガウスガンマ関数クヌースの矢印表記グーゴルプレックスシュリニヴァーサ・ラマヌジャンシュプリンガー・サイエンス・アンド・ビジネス・メディアジャック・アダマールスターリングの近似...ソート再帰再帰的定義函数等式C言語Concrete Mathematics確率論空積空関数空集合級数素数総乗置換 (数学)組合せ (数学)組合せ数学無理数番号記号階乗素数順列解析学解析関数計算複雑性理論超越数関数電卓自然対数自然数連分数逆数K関数MapleMathematicaSageMath漸化式指数関数有理型関数浮動小数点数感嘆符数学数学ソフトウェア数式処理システム数論整関数0の0乗11081808年1−1+2−6+24−120+…4 インデックスを展開 (49 もっと) »

$

(ドル、ダラー、ペソ)は、通貨記号の1つ。ドル記号 (dollar sign)、ペソ記号 (signo de pesos)。 ドル、ペソのほか、主にスペイン語・ポルトガル語圏のさまざまな通貨で使われる。.

新しい!!: 階乗と$ · 続きを見る »

ABC予想

abc予想(abcよそう、abc conjecture, 別名:オステルレ–マッサー予想、Oesterlé–Masser conjecture)は、1985年にとにより提起された数論の予想である。これは多項式に関するメーソン・ストーサーズの定理の整数における類似であり、互いに素でありかつ を満たすような3つの自然数(この予想に呼び方を合わせると),, について述べている。 abc予想は、この予想から数々の興味深い結果が得られることから有名になった。数論における数多の有名な予想や定理が abc予想から直ちに導かれる。 は、abc予想を「ディオファントス解析で最も重要な未解決問題」であるとしている。 2012年8月、京都大学数理解析研究所教授の望月新一は abc予想を証明したとする論文を発表した。望月は証明に用いた理論をと呼んでおり、スピロ予想 (Szpiro's conjecture) とヴォイタ予想 (Vojta's conjecture) の証明などを含む応用があるという.

新しい!!: 階乗とABC予想 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 階乗と偶数 · 続きを見る »

半整数

半整数(はんせいすう、half-integer)とは有理数で、 を整数としたとき の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5、-\frac、4\frac などがある。 ごくまれに半奇整数 と呼ばれることもある。.

新しい!!: 階乗と半整数 · 続きを見る »

収束級数

数学において、級数が収束(しゅうそく、converge)あるいは収斂(しゅうれん)するとは、部分和の成す数列が収束することをいう。このとき、与えられた級数は「(有限な)和を持つ」とか「和が有限確定である」などともいい、収束する級数のことを短く、収束級数 (convergent series) などともよぶ。 ここで、級数とは数列の項の総和のことであり、与えられた数列 (a1, a2,..., an,...) の第 n-部分和とは最初の n-項の有限和 のことであった。.

新しい!!: 階乗と収束級数 · 続きを見る »

反復合成写像

数学における写像の反復適用および反復合成(はんぷくごうせい、iteration)は、同じ写像を繰り返し適用すること(繰り返してもよい)、および同じ写像同士で合成を繰り返すことをいう。またそうして得られた写像は、もとの写像の反復合成写像 (iterated function) あるいは合成冪 (power) と呼ぶ。適当な対象を初期値として、それに反復合成写像を適用して得られる値の列は、初期値の軌道 (orbit) と言う。 反復合成は計算機科学、フラクタル、力学系など、あるいは数学および繰り込み群の物理学において研究の対象となる。.

新しい!!: 階乗と反復合成写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 階乗と同値 · 続きを見る »

合成数

合成数(ごうせいすう、Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数の積で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9.

新しい!!: 階乗と合成数 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 階乗と多項式函数 · 続きを見る »

多重指数

数学において多重指数記法(たじゅうしすうきほう、multi-index notation; 多重添字記法)は、添字記法を順序組を用いて多重化(多変数に一般化)する表記法であり、多変数微分積分学、偏微分方程式論、シュヴァルツ超関数論などの分野において、主に整数冪の冪指数などの添字を多重化した多重指数、多重添字を用いて様々な式の表記を簡潔にする。.

新しい!!: 階乗と多重指数 · 続きを見る »

完全順列

完全順列(かんぜんじゅんれつ、derangement)、もしくは攪乱順列(かくらんじゅんれつ)とは、整数 1, 2, 3, …, n を要素とする順列において、i 番目 (i ≤ n) が i でない順列である。 順列を置換とみると、完全順列は不動点の個数が0の置換に対応している。乱列、混乱順列ともいう。.

新しい!!: 階乗と完全順列 · 続きを見る »

巨大数

巨大数(きょだいすう)とは、日常生活において使用される数よりも巨大な数(実数)のことである。非常に巨大な数は、数学、天文学、宇宙論、暗号理論、インターネットやコンピュータなどの分野でしばしば登場する。天文学的数字(てんもんがくてきすうじ)と呼ばれることもある。 なお、巨大数に対して、0ではないが0に限りなく近い正の実数のことを微小数(びしょうすう)という。 後述のように、巨大な数(や微小な数)を処理するために特殊な数学記号が使われている。.

新しい!!: 階乗と巨大数 · 続きを見る »

三角数

三角数(さんかくすう、)とは多角数の一種で、正三角形の形に点を並べたときにそこに並ぶ点の総数のことである。番目の三角数は から までの自然数の和に等しい。.

新しい!!: 階乗と三角数 · 続きを見る »

交互階乗

交互階乗(こうごかいじょう、alternating factorial)は、自然数で、階乗数を以下の式にしたがって足し合わせた数である。 af(n)はn番目の交互階乗を表す。例えば3番目の交互階乗は 1! -2! +3!.

新しい!!: 階乗と交互階乗 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 階乗と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: 階乗と二項係数 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 階乗と代数学 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 階乗と微分 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 階乗と微分積分学 · 続きを見る »

マンジュル・バルガヴァ

マンジュル・バルガヴァ(Manjul Bhargava, 1974年 - )は、インド系カナダ人の数学者兼タブラ奏者。カナダ・オンタリオ州ハミルトン出身。プリンストン大学教授。 専門は整数論、代数幾何学、組合せ論、表現論。.

新しい!!: 階乗とマンジュル・バルガヴァ · 続きを見る »

ネイピア数

1.

新しい!!: 階乗とネイピア数 · 続きを見る »

バーンズのG関数

数学において、バーンズの -関数(バーンズのGかんすう、G-function) は、スーパー階乗を複素数にまで拡張した特殊関数 である。これはガンマ関数、K関数、グレイシャーの定数に関連するものであり、数学者であるにちなみ名付けられた。 これは(初等函数を掛ける違いを除いて)の特殊な場合である。 正式には、バーンズの -関数は以下のワイエルシュトラスの乗積表示 の形で定義される。ここで はオイラーの定数であり、 は指数関数である。また、 は総乗の Π-記法である。.

新しい!!: 階乗とバーンズのG関数 · 続きを見る »

ランダウの記号

ランダウの記号(ランダウのきごう、Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。.

新しい!!: 階乗とランダウの記号 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: 階乗とリーマンゼータ関数 · 続きを見る »

リウヴィル数

リウヴィル数(リウヴィルすう、Liouville number)とは、以下の定義を満たす実数 のことである:任意の正整数 に対して、 を満たす有理数 が少なくとも一つ存在する。 例えば、 はリウヴィル数である。この数は、超越数であることが証明された初めての数である(ジョゼフ・リウヴィル、1844年)。特にこの数の場合、1が小数点以下、自然数の階乗の桁数に出現する(1!.

新しい!!: 階乗とリウヴィル数 · 続きを見る »

ルジャンドルの公式

初等整数論におけるルジャンドルの公式(ルジャンドルのこうしき、Legendre's formula)は、任意の素数 に対して階乗 を割り切る の最大冪の冪指数を与える式である。アドリアン゠マリ・ルジャンドルにちなんで名付けられた。ルジャンドルの定理、に因んでドポリニャクの公式とも呼ばれる。.

新しい!!: 階乗とルジャンドルの公式 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 階乗とレオンハルト・オイラー · 続きを見る »

ボーア・モレルップの定理

ボーア・モレルップの定理 (Bohr-Mollerup Theorem) は、ガンマ関数を特徴づける定理である。デンマーク人数学者のハラルト・ボーアとにより証明された。この定理によると、正の実軸上で対数凸であり、G(x+1).

新しい!!: 階乗とボーア・モレルップの定理 · 続きを見る »

トーマス・スティルチェス

トーマス・スティルチェス トーマス・ヨアネス・スティルチェス(、1856年12月29日 - 1894年12月31日)は、オランダの数学者。オーファーアイセル州ズヴォレで生まれ、フランスのトゥールーズで死去した。彼はモーメント問題の分野における先駆者であり、また連分数に関する貢献でも知られる。 彼の名を冠したトーマス・スティルチェス数学研究所がライデン大学に存在し、またリーマン・スティルチェス積分などにも名を残している。.

新しい!!: 階乗とトーマス・スティルチェス · 続きを見る »

プロシージャ

プロシージャ (procedure)とは、プログラミングにおいて複数の処理を一つにまとめたものをいう。手続きとするのが定訳である。一連の処理を意味を持った一まとまりにすることで、再利用性が高まり、プログラム中に繰り返して現れる処理を1ヶ所で記述でき、プログラムの保守、管理を容易にする。 繰り返し利用されることから、ルーチンとも言う。呼び出し関係は通常階層構造をなし、その最上位にある、プログラム全体のエントリーポイントを含むルーチンをメインルーチン、呼び出されるものをサブルーチンと言う。また、関数と呼ばれることもある(通常、数学における関数とは違ったものであるので、注意が必要である)。 プログラミング言語により、プロシージャのような構文の分類や呼称はさまざまである。詳細はサブルーチンの記事を参照のこと。 Category:プログラミング言語の構文 he:שגרה ur:دستورالعمل.

新しい!!: 階乗とプロシージャ · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 階乗とテイラー展開 · 続きを見る »

デデキント環

デデキント環(デデキントかん、Dedekind ring)、あるいはデデキント整域(デデキントせいいき、Dedekind domain)とは、任意の0でない真のイデアルが、有限個の素イデアルの積にかけるような整域のことである。そのような分解は一意であることが知られており、イデアル論の基礎定理と呼ばれる。.

新しい!!: 階乗とデデキント環 · 続きを見る »

ディガンマ関数

実数''x'' に対するψ(''x'')の挙動 複素平面上でのψ(''z'')。点''z'' における色が ψ(''z'') の値を表しており、濃いほど 0 に近い。色調はその値の偏角を表す。 数学において、ディガンマ関数(でぃがんまかんすう、digamma function)とはガンマ関数の対数微分で定義される特殊関数。ポリガンマ関数の一種である。.

新しい!!: 階乗とディガンマ関数 · 続きを見る »

ファクトリオン

数学において、ファクトリオン(factorion)とは、 各桁の数字の階乗の和がその数自身となる自然数である。例えば、145は、1! + 4! + 5!.

新しい!!: 階乗とファクトリオン · 続きを見る »

ドナルド・クヌース

ドナルド・エルビン・クヌース(Donald Ervin Knuth, 1938年1月10日 -)は数学者、計算機科学者。スタンフォード大学名誉教授。 クヌースによるアルゴリズムに関する著作 The Art of Computer Programming のシリーズはプログラミングに携わるものの間では有名である。アルゴリズム解析と呼ばれる分野を開拓し、計算理論の発展に多大な貢献をしている。その過程で漸近記法で計算量を表すことを一般化させた。 理論計算機科学への貢献とは別に、コンピュータによる組版システム TeX とフォント設計システム METAFONT の開発者でもあり、Computer Modern という書体ファミリも開発した。 作家であり学者であるクヌースは、文芸的プログラミングのコンセプトを生み出し、そのためのプログラミングシステム WEB / CWEB を開発。また、MIX / MMIX 命令セットアーキテクチャを設計。.

新しい!!: 階乗とドナルド・クヌース · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

新しい!!: 階乗と分数 · 続きを見る »

命題

命題(めいだい、proposition)とは、論理学において判断を言語で表したもので、真または偽という性質をもつもの。また数学で、真偽の判断の対象となる文章または式。定理または問題のこと。西周による訳語の一つ。 厳密な意味での命題の存在は、「意味」の存在と同様に、疑問を投げかける哲学者もいる。また、「意味」の概念が許容される場合にあっても、その本質は何であるかということにはなお議論のあるところである。古い文献では、語の集まりあるいはその語の集まりの表す「意味」という意味で命題という術語を用いているかどうかということが、つねに十分に明らかにされているわけではなかった。 現在では、論争や存在論的な含みを持つことを避けるため、ある解釈の下で(真か偽のいずれであるかという)真理の担い手となる記号列自体について述べる時は、「命題」という代わりに「文 (sentence)」という術語を用いる。ストローソンは「言明 ("statement")」 という術語を用いることを提唱した。.

新しい!!: 階乗と命題 · 続きを見る »

和(わ).

新しい!!: 階乗と和 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 階乗とイデアル (環論) · 続きを見る »

ウィルソンの定理

ウィルソンの定理(ウィルソンのていり)は初等整数論における素数に関する次のような定理である。 p が大きくなるにつれて計算量が膨大になるため、素数かどうかを判定するために用いるには実用的ではない。.

新しい!!: 階乗とウィルソンの定理 · 続きを見る »

オーバーフロー

ーバーフロー (Overflow, Over flow).

新しい!!: 階乗とオーバーフロー · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: 階乗とオイラーの定数 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 階乗とカール・フリードリヒ・ガウス · 続きを見る »

ガンマ関数

1.

新しい!!: 階乗とガンマ関数 · 続きを見る »

クヌースの矢印表記

ヌースの矢印表記とは、1976年にドナルド・クヌースが巨大数を表現するために発明した表記法である。これは、乗算が加算の反復であり、冪乗が乗算の反復であるのと同様の考え方に基づくもので、冪乗の反復(テトレーション、超指数)を表す演算の表記法である。また、クヌースの矢印表記を拡張した表記法に、コンウェイのチェーン表記やBEAFがある。.

新しい!!: 階乗とクヌースの矢印表記 · 続きを見る »

グーゴルプレックス

ーゴルプレックス (googolplex) とは、数の単位であり、1グーゴルプレックスは10の1グーゴル乗 (101googol)、すなわち10の10の100乗乗 (1010100) である。1グーゴルプレックスは1の後に0を1グーゴル個つけることによって表される整数である。.

新しい!!: 階乗とグーゴルプレックス · 続きを見る »

シュリニヴァーサ・ラマヌジャン

ュリニヴァーサ・アイヤンガー・ラマヌジャン(Srinivasa Aiyangar Ramanujan、1887年12月22日 - 1920年4月26日)はインドの数学者。極めて直感的、天才的な閃きにより「インドの魔術師」の異名を取った。.

新しい!!: 階乗とシュリニヴァーサ・ラマヌジャン · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 階乗とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジャック・アダマール

ャック・アダマール ジャック・サロモン・アダマール(Jacques Salomon Hadamard、1865年12月8日 - 1963年10月17日)はフランスの数学者である。1896年に素数定理を証明したことで知られる。.

新しい!!: 階乗とジャック・アダマール · 続きを見る »

スターリングの近似

log ''n''! と ''n'' log ''n'' − ''n'' は ''n'' → ∞ のとき漸近する スターリングの近似(Stirling's approximation)またはスターリングの公式(Stirling's formula)は、階乗、あるいはその拡張の一つであるガンマ関数の漸近近似である。名称は数学者に因む。.

新しい!!: 階乗とスターリングの近似 · 続きを見る »

ソート

ート は、データの集合を一定の規則に従って並べること。日本語では整列(せいれつ)と訳される。(以前はその原義から分類という訳語が充てられていたが、もう使われていない) 主にコンピュータソフトにおけるリストに表示するデータに対し、全順序関係によって一列に並べることを指す。また、単に「ソート」といった場合、値の小さい方から大きい方へ順に並べる昇順(しょうじゅん、)を指すことが多い。その反対に値を大きい方から小さい方へ順に並べることを降順(こうじゅん、)という。 対象となるデータのデータ構造や必要な出力によって、使われるアルゴリズムは異なる。.

新しい!!: 階乗とソート · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: 階乗と再帰 · 続きを見る »

再帰的定義

再帰的定義(Recursive Definition)は、再帰的な定義、すなわち、あるものを定義するにあたってそれ自身を定義に含むものを言う。無限後退を避けるため、定義に含まれる「それ自身」はよく定義されていなければならない。同義語として帰納的定義(Inductive Definition)がある。.

新しい!!: 階乗と再帰的定義 · 続きを見る »

函数等式

数学、特に解析的整数論における函数等式(かんすうとうしき、functional equation)は、数論的な ''L''-函数が持っていることを期待される特徴的性質のひとつであり、(未だ多く推測的な内容を含むけれども)「函数等式斯くあるべし」という精巧な理論が存在する。.

新しい!!: 階乗と函数等式 · 続きを見る »

C言語

C言語(シーげんご)は、1972年にAT&Tベル研究所のデニス・リッチーが主体となって開発したプログラミング言語である。英語圏では単に C と呼んでおり、日本でも文書や文脈によっては同様に C と呼ぶことがある。.

新しい!!: 階乗とC言語 · 続きを見る »

Concrete Mathematics

Concrete Mathematics: A Foundation for Computer Science(邦題:コンピュータの数学)は、、ドナルド・クヌース、による、計算機科学の分野で幅広く使用されている教科書である。.

新しい!!: 階乗とConcrete Mathematics · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 階乗と確率論 · 続きを見る »

空積

数学における空積(くうせき、empty product)あるいは零項積 (nullary product) は、 個の因子を掛けた結果である。(考えている乗法演算に単位元が存在する場合に限り)「空積の値は単位元 1 に等しい」という規約を設ける。このことは、空和(すなわち0個の数を足した結果)が零元 0 に等しいと約束することと同様である。 用語 "空積" は算術的演算を議論するときに上の意味で使われることが多い。しかしながら、この用語は集合論の共通部分、圏論の積、コンピュータプログラミングにおける積に対しても使われる。これらは以下で議論される。.

新しい!!: 階乗と空積 · 続きを見る »

空関数

関数(くうかんすう、empty function)、あるいは空写像とは、数学における関数(写像)の一種で、定義域が空集合の関数をいう。任意の集合 A について、A を終域とする空関数 は必ずちょうど1つ存在する。 空関数のグラフは、直積集合 ∅×A の部分集合である。直積は空なので、その部分集合も空集合 ∅ である。定義域 ∅ に属する全ての x に対して、(x, y) ∈ ∅ となるような値域 A 内の y が一意に定まるので、空部分集合は妥当なグラフである。実際には「定義域にはどんな x も存在しない」ので、これはの一例である。 空関数が定数関数の定義に含まれるかどうかを気にすることは少なく、その場その場で便利なように定義することが多い。しかし場合によっては空関数を定数関数の一種と考えない方がよく、値域を用いた定義が望ましい場合もある。これは、1を素数に含めないとか、空の位相空間を連結空間に含めないとか、自明群を単純群に含めないといったことと同列の考え方である。 空関数は単射であり、とくに終域 A も空集合のときは全単射である。 任意の集合 A について唯一の空関数が存在するということは、空集合が集合の圏の始対象 (initial object) であることを意味する。 値域を空集合とする空関数を考えることにより、基数あるいは順序数の冪の意味で を示すことが出来る。詳細は0の0乗#集合論による導出を参照。.

新しい!!: 階乗と空関数 · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 階乗と空集合 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 階乗と級数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 階乗と素数 · 続きを見る »

総乗

総乗(そうじょう)とは、積の定義される集合における多項演算の一つで、元の列の全ての積のことである。.

新しい!!: 階乗と総乗 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 階乗と置換 (数学) · 続きを見る »

組合せ (数学)

数学において、組合せ(くみあわせ、combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。卑近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。.

新しい!!: 階乗と組合せ (数学) · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 階乗と組合せ数学 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 階乗と無理数 · 続きを見る »

番号記号

号記号(ばんごうきごう)は、「井桁」(いげた)や「スクエア」とも呼ばれ、番号を示す数字の前に置かれる記号である。14世紀頃、古代ローマで重さの記号として使われていた lb に横棒を引いたものが、手書きのためだんだんと崩れて今の形になったと言われている。 日本ではこの記号の代わりにヌメロ (numero, '''No.''') を使って「ナンバー」と読むのが一般的である。 例:.

新しい!!: 階乗と番号記号 · 続きを見る »

階乗素数

階乗素数(かいじょうそすう、factorial prime)とは、階乗との差が である素数のことである。つまり、( は自然数)と表される素数のことである。 階乗素数は少ないことと、自然数の中でしばしば合成数が連続して存在することが説明できる。 は 以上の自然数 で割りきれるから、連続する 個の合成数である。例えば、素数 の次の素数は であり、これらの間の89個の自然数はすべて合成数である。しかし、2つの素数の間の長いギャップはこの方法により得られるものがすべてではない。例えば、素数 と の間には95個の合成数が並んでいる。 2017年8月現在48個の階乗素数が知られており、その中で最大のものは である。十進法表示したときの桁数は101万5842桁にも及ぶ。.

新しい!!: 階乗と階乗素数 · 続きを見る »

順列

初等組合せ論における順列(じゅんれつ、sequence without repetition、arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「」はともに n-元集合から -個の元を取り出す方法として可能なものを数え上げる問題に関するものである。取り出す順番を勘案するのが -順列、順番を無視するのが -組合せである。.

新しい!!: 階乗と順列 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 階乗と解析学 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 階乗と解析関数 · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: 階乗と計算複雑性理論 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 階乗と超越数 · 続きを見る »

関数電卓

FX-77。このような太陽電池を使った1行表示の関数電卓は1980年代から登場した。 カシオFX-991ES (2005) はドットマトリクス表示になっている。 TI-84 Plus。典型的なグラフ電卓 関数電卓(かんすうでんたく)は、科学・工学・数学などに関わる機能を持った電卓である。教育にもよく使われている。日本語では、様々な関数の計算が可能なことからこのように呼ばれるが、英語では scientific calculator という呼称が一般的である。 欧米の高等教育分野ではグラフ電卓に取って代わられている。グラフ電卓は関数電卓およびプログラム電卓としての機能を備え、さらに入力データなどに基づいてグラフ(関数のグラフないし統計図表、チャート)を描画できる。関数電卓は金融市場向けの電卓ともオーバーラップする部分がある。 主なメーカーとしては、ヒューレット・パッカード、テキサス・インスツルメンツ、カシオ計算機、シャープ、キヤノンがある。 関数電卓の出現により、数表(や計算尺の初等関数の尺の機能)は、主要な役割を終えた。.

新しい!!: 階乗と関数電卓 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 階乗と自然対数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 階乗と自然数 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: 階乗と連分数 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 階乗と逆数 · 続きを見る »

K関数

数学において、K関数とは、ハイパー階乗(hyperfactorial)の複素数への一般化である。.

新しい!!: 階乗とK関数 · 続きを見る »

Maple

Maple(メイプル)とは、数式処理、数値計算、グラフ作成などを行うソフトウェアのひとつである。Mapleは、1980年代前半にカナダのウォータールー大学で開発され(株式会社としてはWaterloo Maple名義。以下Maplesoft)、日本ではサイバネットシステムが販売、翻訳を行っていたが、2009年9月に、Maplesoftをサイバネットシステムが買収した。Mapleを使うと、紙と鉛筆で行う数学の計算や作図をコンピュータで行うことができる。 また、販売方法としては、アカデミックバージョンを出し、学生や、教員、研究者向けに廉価で(1ライセンス2~3万円程度)ほとんどスペックの落ちない製品を販売している。また、小学校、中学校、高校などの初等教育の現場における数学、理科の授業から、大学や企業のR&D部門などの研究機関に至るまで幅広いユーザ層が開拓されつつある。.

新しい!!: 階乗とMaple · 続きを見る »

Mathematica

Mathematica(マセマティカ)は、スティーブン・ウルフラムが考案し広く使われている数式処理システム。ウルフラム・リサーチの、ウルフラムが率いる数学者とプログラマのチームが開発し、同社が販売している。Mathematicaは項書き換えを基本として、複数のパラダイムをエミュレートするプログラミング言語としても強力である。.

新しい!!: 階乗とMathematica · 続きを見る »

SageMath

SageMath(セイジ、以前はSage、SAGEと記した)は数学の幅広い処理を扱うソフトウェアである。扱う処理は計算機代数、組み合わせ、数値計算など多岐に及ぶ。工学的応用に加え基礎科学の研究もカバーする。 SageMathは2005年2月24日にフリーソフトウェアとしてGNU General Public Licenseの元で初版が公開された。その開発目的はMagma、Maple、Mathematica(いずれも計算機代数ソフトウェア)、MATLABの代替となるフリーかつオープンソースなソフトウェアを提供することであった。開発は、米ワシントン大学の数学准教授のウィリアム・スタイン (William Stein) が主導して始まった。 SageMathはPythonプログラミング言語を使用しており、手続き型・関数型・オブジェクト指向によるプログラムの記述を行うことができる。.

新しい!!: 階乗とSageMath · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 階乗と漸化式 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 階乗と指数関数 · 続きを見る »

有理型関数

複素解析において、有理型関数(ゆうりけいかんすう、ゆうりがたかんすう、meromorphic function)あるいは、関数が有理型(ゆうりけい、)であるとは、複素数平面あるいは連結リーマン面のある領域で定義され、その中で極(仮性特異点)以外の特異点を持たない解析関数(特異点以外では正則な関数)のことを指す。 有理型関数は正則関数の商として表すことができ、その分母となる正則関数の零点が元の有理型関数の極となる(分母は定数関数 0 ではない)。.

新しい!!: 階乗と有理型関数 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 階乗と浮動小数点数 · 続きを見る »

感嘆符

日本の「その他の危険」の標識 感嘆符(かんたんふ)とは、約物の一つで「!」と書き表される。視覚的な表現として注意喚起のため危険であることを表現するために用いられることもある。.

新しい!!: 階乗と感嘆符 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 階乗と数学 · 続きを見る »

数学ソフトウェア

数学ソフトウェア(すうがくソフトウェア)は、モデル、数値的あるいは記号的な解析あるいは計算、または幾何学データに用いられるソフトウェアである。 数学ソフトウェアは端的に言ってしまうと、数学の問題を解いたり、研究したりするのに用いる専用のソフトウェアである。数学とは何かについて様々な見解があるのに応じて、それに用いる数学ソフトウェアの範囲にも広義と狭義にわたる見解がある。 実際、数学ソフトウェアのあるもの(数学ライブラリー)は他の科学ソフトウェアの一部に組み込まれて利用されたりもする。極めてプライマリーなもの(たとえば初等関数を浮動小数点演算をして計算する)のも数学ソフトウェアの範疇に入るかもしれない。これらは普通ミドルウェアとして一般のシステムに組み込まれていたりする。いわば数学ソフトウェアはアプリケーションソフトではあるが他の科学ソフトウェアの基本となっているという意味でそれが特徴の一つともなっている。 数学ソフトウェアは教育目的などでユーザーインターフェイスが良くなっているものも多いが(数学教育用ソフトウェアを見よ)、その問題を解く核となっている部分は直接に数学上の知見に依存したアルゴリズムによっており、問題が少なくとも(ハードウェアに物理的な限界がある)数学的に構成的に解けなければ処理できなくなっているのは当たり前だろう。これが他のアプリケーションソフトとの大きな違いだろう。 なかでも、数学ソフトウェアを使う際に次のような場合があることに気を付けなくてはいけないことはほとんど常識だろう。.

新しい!!: 階乗と数学ソフトウェア · 続きを見る »

数式処理システム

数式処理システム(すうしきしょりシステム、Computer algebra system、CAS,Formula Manipulation System,広義にはSymbolic Computation System)は、コンピュータを用いて数式を記号的に処理するソフトウェアである。コンピュータによる通常の数値計算処理では実数を有限精度の数値(浮動小数点数)で近似し、数値と演算に対して丸め誤差を許容して計算を行なうので数学的に厳密な結果を得ることが困難もしくは不可能であるのに対して、数式処理システムでは主に抽象度の高い記号列を取り扱い,可能な範囲で代数的な規則に基づきながら厳密な記号処理を行う。ただし最近では応用性と実用性の観点から、数値とその演算に対して浮動小数点数も扱える(数値・数式の)融合計算システムとでも呼べるような数式処理システムも増えて来た。 また,数式処理システムに向けた計算アルゴリズムを研究する分野も数式処理(あるいは computer algebra の直訳として計算機代数)と呼ぶ。.

新しい!!: 階乗と数式処理システム · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 階乗と数論 · 続きを見る »

整関数

複素解析における整函数(せいかんすう、entire function)は、複素数平面の全域で定義される正則函数を言う。そのような函数の例として、特に複素指数函数や多項式函数およびそれらの和、積、合成を用いた組合せとしての三角函数および双曲線函数などを挙げることができる。 二つの整函数の商として有理型函数が与えられる。 解析函数論の特定の場合として考えれば「整函数の基本理論」は一般論からの単に帰結であり、それは本質的に複素素関数論の初歩(しばしばヴァイヤシュトラスの因数分解定理によって詳しく調べられる)である。しかしその研究は、19世紀半ばごろのコーシー,, ヴァイヤシュトラスらから始まり、ボレル, アダマール,, ピカール,, ら(そしてネヴァンリンナを忘れることはできない)によって著しく豊かに推し進められ、いまや堂々たる理論となった。 整函数の理論は、整函数をその増大度によって分類しようとするもので、整函数のテイラー係数と増大度の間の関係、取りうる零点と整函数の振る舞いの間の関係、整函数とその導函数の間の関係を特定する。 整函数の理論におけるこれらの側面は、有理型函数に対するものに拡張される。.

新しい!!: 階乗と整関数 · 続きを見る »

0の0乗

の 乗(ぜろのぜろじょう、zero to the power of zero, 0 to the 0th power)は、累乗あるいは指数関数において、底を 、指数を としたものである。通常、指数関数 は実数 と に対して定義されているため、 はこの意味では定義されていない。その値は、指数の が「非負整数の 」であるような場合には と定義しておくと便利であることが多い一方で、0 と定義するのが便利である場合もある。少なくとも「実数あるいは複素数としての 0」であるような場合には、例えば二変数関数 を考えれば分かるように、原点 において自然な(二変数関数として連続となる)定義は存在しないから、連続性や解析性による延長はこの議論において有効でない。.

新しい!!: 階乗と0の0乗 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 階乗と1 · 続きを見る »

108

108(百八、ひゃくはち)は自然数、また整数において、107の次で109の前の数である。.

新しい!!: 階乗と108 · 続きを見る »

1808年

記載なし。

新しい!!: 階乗と1808年 · 続きを見る »

1−1+2−6+24−120+…

1 − 1 + 2 − 6 + 24 − 120 + … は発散級数のひとつ。階乗に関する交項級数であり、総和の記号を用いて と表される。 この級数は通常の意味での和を持たないが、オイラーは微分方程式を用いる適当な形式総和法によりこの級数に有限な値を割り当てた。 この発散級数の値を知る簡単な方法の一つは、ボレル和 を考えることである(式の両辺は通常の意味でともに無限大であり、ここでの等号はこのままでは正当化されない形式的な等号であることに注意)。ここで仮に無限和と積分とが(記号的に)交換できるものとすれば という式が得られることになるが、右辺の角括弧内の総和は (0 &le) x < 1 のとき収束して 1/(1 + x) に等しい。さらに仮定を重ねて(1 ≤ x のときも収束性を無視して)角括弧内の総和を 1/(1 + x) に書き換えてよいものとすると、全体の積分が有限値に収束するものになり、ボレルの意味で と書くことが正当化できる(但し、e は自然対数の底、E_1 (z)は指数積分である)。.

新しい!!: 階乗と1−1+2−6+24−120+… · 続きを見る »

4

四」の筆順 4(四、よん、し、す、よつ、よ)は、自然数および整数で、3 の次で 5 の前の数である。漢字の「四」は音読みが「し」、訓読みが「よ(よつ)」であるが、四の字「七(しち)」との聞き違いを防ぐため、近年では「よん」という読みが用いられる。英語の序数詞では 4th/''fourth'' となる。ラテン語では quattuor (クアットゥオル)。.

新しい!!: 階乗と4 · 続きを見る »

ここにリダイレクトされます:

N!多重階乗階乗数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »