ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

平方数

索引 平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

82 関係: 偶数十進法可換体合成数多角数多角数定理奇数完全数三個の平方数の和三角数三進法平方三角数二個の平方数の和二重平方数二進法五角数ハーシャッド数バーゼル問題リーマンゼータ関数ルジャンドル予想フィボナッチ数図形数四平方定理四角錐数立方数素数約数総和組合せ (数学)直積集合階差数列高々 (数学)自己同形数自然数逆数陳景潤正方形漸化式有理数数字根整数011001000010241211225...144161691961975年225240125256289324363614400409644148449529576625646767297848008199009000961 インデックスを展開 (32 もっと) »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 平方数と偶数 · 続きを見る »

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

新しい!!: 平方数と十進法 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 平方数と可換体 · 続きを見る »

合成数

合成数(ごうせいすう、Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数の積で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9.

新しい!!: 平方数と合成数 · 続きを見る »

多角数

多角数(たかくすう、polygonal number)とは、正多角形の形に点を並べたときにそこに含まれる点の総数にあたる自然数である。多角形数ともいう。.

新しい!!: 平方数と多角数 · 続きを見る »

多角数定理

多角数定理(たかくすうていり、polygonal number theorem)とは、「すべての自然数は高々 m 個の ''m'' 角数の和である」という数論の定理である。m.

新しい!!: 平方数と多角数定理 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 平方数と奇数 · 続きを見る »

完全数

完全数(かんぜんすう,)とは、自分自身を除く正の約数の和に等しくなる自然数のことである。完全数の最初の3個は、、 である。「完全数」は「万物は数なり」と考えたピタゴラスが名付けた数の一つであることに由来する「高数・数学者列伝」吉永良正『高校への数学』vol.20、8月号が、彼がなぜ「完全」と考えたのかについては何も書き残されていないようである。中世の『聖書』の研究者は、「 は「神が世界を創造した(天地創造)6日間」、 は「月の公転周期」で、これら2つの数は地上と天界における神の完全性を象徴している」と考えたとされる。古代ギリシアの数学者は他にもあと2つの完全数 を知っていた。以来、完全数はどれだけあるのかの探求が2500年以上のちの現在まで続けられている。 完全数の定義は、正の約数の総和が自分自身の2倍に等しいことと同値である。すなわち、 が完全数であるとは、約数関数 に対して が成り立つことであると表現できる。また、正の約数の逆数和が であると表現することもできる。.

新しい!!: 平方数と完全数 · 続きを見る »

三個の平方数の和

この記事は「平方数」、「三角数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっていない。日本語では「三平方和定理」などと呼ばれることもあるが、ピタゴラスの定理とは全く別のものである。 ---- 自然数Nが三個の平方数の和で表されるための必要十分条件は、n\ge0,k\ge0,a\in\により、N.

新しい!!: 平方数と三個の平方数の和 · 続きを見る »

三角数

三角数(さんかくすう、)とは多角数の一種で、正三角形の形に点を並べたときにそこに並ぶ点の総数のことである。番目の三角数は から までの自然数の和に等しい。.

新しい!!: 平方数と三角数 · 続きを見る »

三進法

三進法(さんしんほう)とは、3 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。.

新しい!!: 平方数と三進法 · 続きを見る »

平方三角数

平方三角数(へいほうさんかくすう、)は平方数のうち三角数でもある自然数である。例えば 36 は6番目の平方数 62 であり、また8番目の三角数 8(8+1)/2 でもあるので平方三角数である。平方三角数は無数にあり、最小のものは1である。 平方三角数を小さい順に列記すると となる。 k番目の平方三角数 Nk は で与えられる。この公式は、1778年にオイラーが発見している。.

新しい!!: 平方数と平方三角数 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: 平方数と二個の平方数の和 · 続きを見る »

二重平方数

算術における四乗数(しじょうすう、biquadratic number; 複平方数別に biquadratic という形容は「複二次」ということを強調するものではない。そもそも接頭辞 quadr- は 4 を意味するので、quadratic は「4つの」「四次の」という意味のはずだが、四辺形の面積としての square (ex quadrem) が「平方」を意味し、それに伴って二次方程式や二次形式などで quadratic が「二次の」という意味で多用されるなかで、「四次の」を意味するために冗長ながら「二回」を意味する接頭辞 bi- を附した biquadratic を使うことになったという事情による 。したがって、和訳語としては単に「四乗」を対応させるのが自然であると思われる。)あるいは二重平方数とは、狭義には別の自然数の四乗(平方の平方)になっているような自然数のことである。 最小の二重平方数は 14.

新しい!!: 平方数と二重平方数 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 平方数と二進法 · 続きを見る »

五角数

五角数(ごかくすう、pentagonal number)とは、多角数の一種で、正五角形の形に点を図のように並べたとき、図に含まれる点の総数にあたる自然数である。五角数は無数にあり、そのなかでは 1 が最も小さい。3で割ると1余る整数を1から小さい順に足した数と定義してもよい。例:5 (.

新しい!!: 平方数と五角数 · 続きを見る »

ハーシャッド数

ハーシャッド数(ハーシャッドすう、harshad number)とは、各位の和(数字和)が元の数の約数であるような自然数である。 例えば、195 は各位の和が 1 + 9 + 5.

新しい!!: 平方数とハーシャッド数 · 続きを見る »

バーゼル問題

バーゼル問題(バーゼルもんだい、Basel problem)は、級数の問題の一つで、平方数の逆数全ての和はいくつかという問題である。1644年に によって提起され、1735年にレオンハルト・オイラーによって解かれた。バーゼルはオイラーの故郷であり、この問題を解くのに失敗したベルヌーイ一家の故郷でもある。.

新しい!!: 平方数とバーゼル問題 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: 平方数とリーマンゼータ関数 · 続きを見る »

ルジャンドル予想

ルジャンドル予想()とは、任意の自然数 について、 と の間には必ず素数が存在するという予想である。フランスの数学者アドリアン=マリ・ルジャンドルにより提起された。2016年現在、未解決問題となっている。.

新しい!!: 平方数とルジャンドル予想 · 続きを見る »

フィボナッチ数

フィボナッチ数列の各項を一辺とする正方形 メインページ(2007年〜2012年)で使われていたイメージ画像もフィボナッチ数列を利用している フィボナッチ数(フィボナッチすう、Fibonacci number)は、イタリアの数学者レオナルド・フィボナッチ(ピサのレオナルド)にちなんで名付けられた数である。.

新しい!!: 平方数とフィボナッチ数 · 続きを見る »

億(おく)は漢字文化圏における数の単位の一つ。現在の日本・中国・朝鮮ではいずれも 108 を表す。.

新しい!!: 平方数と億 · 続きを見る »

兆(ちょう)は漢字文化圏における数の単位の一つ。兆がいくつを示すかは時代や地域により異なる。現在、日本・台湾・韓国・香港では 1012.

新しい!!: 平方数と兆 · 続きを見る »

図形数

正方形に対応する四角数 図形数(ずけいすう、)とは、一定の規則で図形状に並べられた点の個数として表される自然数の総称である。その歴史は、古代ギリシアのピタゴラス学派が「万物は数である」との思想のもと、図形と数を結び付けたところにまで遡る。例えば、図形として正方形を考えると、数としては平方数を得る。平方数を図形数として見るときには、これを特に「四角数」と呼ぶ。.

新しい!!: 平方数と図形数 · 続きを見る »

四平方定理

数学において、ラグランジュの四平方定理(Lagrange's four square theorem)は、全ての自然数が高々四個の平方数の和で表されることを主張する定理である。これはフェルマーの多角数定理の四角数の場合に当たり、ウェアリングの問題の二次の場合に当たる。ヤコビの四平方定理(Jacobi's -)は自然数を高々四個の平方数の和で表す方法の数を与える定理である。.

新しい!!: 平方数と四平方定理 · 続きを見る »

四角錐数

四角錐数(しかくすいすう、square pyramidal number)は球を右図のように1段目に1個、2段目に4個、3段目に9個、…というように正四角錐の形に積んだとき、そこに含まれる球の総数にあたる自然数である。つまり1から順に平方数をいくつか加えた数のことである。 四角錐数を小さい順に列記すると 例: 1, 5 (.

新しい!!: 平方数と四角錐数 · 続きを見る »

立方数

立方数(りっぽうすう、cubic number)とは、ある数 n の三乗(立方)となる数である。例えば 125 は 53 であるので立方数である。自然数の最小の立方数は 1 であり、小さい順に列記すると 個数が立方数である点を縦、横、高さの三方向に等間隔に並べることで正六面体(立方体)の形を作れることから、「六面数」と呼ばれることもある。例えば216個の点は縦、横、高さの一辺にそれぞれ6個ずつ並べることで正六面体の形を作ることができる。.

新しい!!: 平方数と立方数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 平方数と素数 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: 平方数と約数 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 平方数と総和 · 続きを見る »

組合せ (数学)

数学において、組合せ(くみあわせ、combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。卑近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。.

新しい!!: 平方数と組合せ (数学) · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 平方数と直積集合 · 続きを見る »

階差数列

階差数列(かいさすうれつ、progression of differences, sequence of differences)とは、ある数列に対し、隣り合う項の差をとることによってできる新たな数列のことである。数列の規則性が見えにくい場合でも、階差数列を考えることにより元の数列の素性が分かりやすくなる場合がある。.

新しい!!: 平方数と階差数列 · 続きを見る »

高々 (数学)

数学において、高々(たかだか)という表現は、英語の at most に対応した厳密な意味を持つ用語である。 「多くとも」、「以下」と同義であるが、文脈によってはこれらよりも好まれる場合もある(例:「高々可算」とは言うが「可算以下」とは言わない。).

新しい!!: 平方数と高々 (数学) · 続きを見る »

自己同形数

自己同形数 (じこどうけいすう、)とは平方したとき、下桁の数が自分自身と同じになる数の事である。 例えば 52.

新しい!!: 平方数と自己同形数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 平方数と自然数 · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 平方数と逆数 · 続きを見る »

陳景潤

陳景潤(ちん けいじゅん、Chen Jingrun, 1933年5月22日 - 1996年3月19日)は中華人民共和国の数学者。専門は数論、特に解析的整数論。ゴールドバッハ予想などの一般にも親しみやすい題材で著しい業績を挙げ、特に中国国内で有名であり、切手の題材になったこともある。.

新しい!!: 平方数と陳景潤 · 続きを見る »

正方形

正方形(せいほうけい、英: square)または正四角形は、平面上の幾何学において、4つの辺の長さが全て等しく、4つの角の角度が全て等しい四角形のことであり、正多角形の1種である。正方形は、長方形、菱形、凧形、平行四辺形、台形の特殊な形だと考えることもできる。なお1m2の面積は、一辺1mの正方形の面積と定義される。1cm2、1km2なども同様である。.

新しい!!: 平方数と正方形 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: 平方数と漸化式 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 平方数と有理数 · 続きを見る »

数字根

数字根(すうじこん、digital root)とは、正の整数値の各位の和(数字和)を求め、結果の数字和を求め、という操作を繰り返し、最終的に得られる 1 桁の数を指す。 例えば、65536 の数字根は 7 である。(6 + 5 + 5 + 3 + 6.

新しい!!: 平方数と数字根 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 平方数と整数 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 平方数と0 · 続きを見る »

1

一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

新しい!!: 平方数と1 · 続きを見る »

100

の筆順 100(ひゃく、もも)は自然数、また整数において、99の次で101の前の数である。 漢字の百(ひゃく、もも)は、単に100を意味する以外に、非常に多いことも表す。また、日本語の訓読みでは、百倍を意味する語尾を「お」(歴史的仮名遣では「ほ」)と読む(例:五百(いお)、八百(やお))。 また、日本語の大和言葉では、数としての100を「もも」といい、単位としての100を「お」(歴史的仮名遣では「ほ」)という(例:五百(いお).

新しい!!: 平方数と100 · 続きを見る »

10000

10000(いちまん、よろず、よろづ)は自然数、また整数において、9999の次で10001の前の数である。.

新しい!!: 平方数と10000 · 続きを見る »

1024

1024(千二十四、せんにじゅうし,せんにじゅうよん)は自然数、また整数において、1023の次で1025の前の数である。.

新しい!!: 平方数と1024 · 続きを見る »

121

121(百二十一、百廿一、ひゃくにじゅういち)は自然数、また整数において、120の次で122の前の数である。.

新しい!!: 平方数と121 · 続きを見る »

1225

1225(千二百二十五、せんにひゃくにじゅうご)は自然数、また整数において、1224の次で1226の前の数である。.

新しい!!: 平方数と1225 · 続きを見る »

144

144(百四十四、ひゃくよんじゅうよん)は自然数、また整数において、143 の次で 145 の前の数である。.

新しい!!: 平方数と144 · 続きを見る »

16

16(十六、じゅうろく、とおあまりむつ)は自然数、また整数において、15 の次で 17 の前の数である。ラテン語では sedecim(セーデキム)。.

新しい!!: 平方数と16 · 続きを見る »

169

169(百六十九、ひゃくろくじゅうきゅう)は自然数、また整数において、168の次で170の前の数である。.

新しい!!: 平方数と169 · 続きを見る »

196

196(百九十六、ひゃくきゅうじゅうろく)は自然数、また整数において、195の次で197の前の数である。.

新しい!!: 平方数と196 · 続きを見る »

1975年

記載なし。

新しい!!: 平方数と1975年 · 続きを見る »

225

225(二百二十五、にひゃくにじゅうご)は、自然数また整数において、224の次で226の前の数である。.

新しい!!: 平方数と225 · 続きを見る »

2401

2401(二千四百一、にせんよんひゃくいち)は、自然数および整数において、2400の次で2402の前の数である。.

新しい!!: 平方数と2401 · 続きを見る »

25

25(二十五、廿五、にじゅうご、ねんご、はたちあまりいつつ)はl 、24 の次で 26 の前の数である。.

新しい!!: 平方数と25 · 続きを見る »

256

256(二百五十六、にひゃくごじゅうろく)は自然数、また整数において、 255 の次で 257 の前の数である。.

新しい!!: 平方数と256 · 続きを見る »

289

289(二百八十九、にひゃくはちじゅうきゅう)は自然数、また整数において、288の次で290の前の数である。.

新しい!!: 平方数と289 · 続きを見る »

324

324(三百二十四、三二四、さんびゃくにじゅうよん)は自然数、また整数において、323の次で325の前の数である。.

新しい!!: 平方数と324 · 続きを見る »

36

36(三十六、さんじゅうろく、みそむ、みそじあまりむつ)は自然数、また整数において、35 の次で 37 の前の数である。.

新しい!!: 平方数と36 · 続きを見る »

361

361(三百六十一、さんびゃくろくじゅういち)は、自然数、また整数において、 360 の次で 362 の前の数である。.

新しい!!: 平方数と361 · 続きを見る »

4

四」の筆順 4(四、よん、し、す、よつ、よ)は、自然数および整数で、3 の次で 5 の前の数である。漢字の「四」は音読みが「し」、訓読みが「よ(よつ)」であるが、四の字「七(しち)」との聞き違いを防ぐため、近年では「よん」という読みが用いられる。英語の序数詞では 4th/''fourth'' となる。ラテン語では quattuor (クアットゥオル)。.

新しい!!: 平方数と4 · 続きを見る »

400

400 (四百、よんひゃく、よお)は自然数、また整数において、399の次で401の前の数である。また、この項目では401から499までの数字についても扱う。.

新しい!!: 平方数と400 · 続きを見る »

4096

4096 (四千九十六、よんせんきゅうじゅうろく)は自然数、また整数において、4095 の次で 4097 の前の数である。.

新しい!!: 平方数と4096 · 続きを見る »

441

441(よんひゃくよんじゅういち)は、自然数また整数において、440の次で442の前の数である。.

新しい!!: 平方数と441 · 続きを見る »

484

484(四百八十四、よんひゃくはちじゅうよん)は、自然数および整数において、483の次で485の前の数である。.

新しい!!: 平方数と484 · 続きを見る »

49

49(四十九、しじゅうく、しじゅうきゅう、よんじゅうきゅう、よそじあまりここのつ)は自然数、また整数において、48 の次で 50 の前の数である。.

新しい!!: 平方数と49 · 続きを見る »

529

529(五百二十九、ごひゃくにじゅうきゅう)は自然数のひとつであり、528 の次で 530 の前の数である。.

新しい!!: 平方数と529 · 続きを見る »

576

576(五百七十六、ごひゃくななじゅうろく)とは、自然数または整数において、575の次で577の前の数である。.

新しい!!: 平方数と576 · 続きを見る »

625

625(六百二十五、ろっぴゃくにじゅうご)は自然数、また整数において、 624 の次で 626 の前の数である。.

新しい!!: 平方数と625 · 続きを見る »

64

64(六十四、ろくじゅうし、ろくじゅうよん、むそよん、むそじあまりよつ)は自然数、また整数において、63 の次で 65 の前の数である。.

新しい!!: 平方数と64 · 続きを見る »

676

676(六百七十六、ろっぴゃくななじゅうろく)とは、自然数または整数において、675 の次で 677 の前の数である。.

新しい!!: 平方数と676 · 続きを見る »

729

729(七百二十九、ななひゃくにじゅうきゅう)は自然数、また整数において、728の次で730の前の数である。.

新しい!!: 平方数と729 · 続きを見る »

784

784(七百八十四、ななひゃくはちじゅうよん)とは自然数のひとつであり、783の次で785の前の数である。.

新しい!!: 平方数と784 · 続きを見る »

800

800(八百、はっぴゃく、やお)は自然数、また整数において、799の次で801の前の数である。.

新しい!!: 平方数と800 · 続きを見る »

81

81(八十一、はちじゅういち、やそひと、やそじあまりひとつ)は、自然数また整数において、80 の次で 82 の前の数である。.

新しい!!: 平方数と81 · 続きを見る »

9

UNOのカード。6と9に下線がある。 「九」の筆順 9(九、きゅう、く、ちゅう、ここの)は、自然数または整数において、8 の次で 10 の前の数である。英語の序数詞では、9th、ninthとなる。ラテン語ではnovem(ノウェム)。なお、紙片や球体などに印字される場合、6 との混同を避けるために「9」のように下線を引いて区別されることがある。.

新しい!!: 平方数と9 · 続きを見る »

900

900(きゅうひゃく、nine hundred)は、自然数また整数において、899の次で901の前の数である。.

新しい!!: 平方数と900 · 続きを見る »

9000

9000(きゅうせん)は、8999の次、9001の前の整数である。.

新しい!!: 平方数と9000 · 続きを見る »

961

961(九百六十一、きゅうひゃくろくじゅういち)は、自然数および整数において、960の次で962の前の数である。.

新しい!!: 平方数と961 · 続きを見る »

ここにリダイレクトされます:

4角数二乗数四角数正方形数正方数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »