ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ナッシュの埋め込み定理とリーマン幾何学

ショートカット: 違い類似点ジャカード類似性係数参考文献

ナッシュの埋め込み定理とリーマン幾何学の違い

ナッシュの埋め込み定理 vs. リーマン幾何学

ョン・フォーブス・ナッシュ (John Forbes Nash) の名に因んだナッシュの埋め込み定理 (Nash embedding theorems (or imbedding theorems)) は、すべてのリーマン多様体はユークリッド空間の中へ等長に埋め込むことができるという定理である。等長とは、すべてのの長さが保存されることを意味する。例えば、紙のページを引き伸ばしたり破ったりすることなしに折り曲げると、ページのユークリッド空間へのになる。ページに描かれた曲線はページが折り曲げられても同じ長さのままであるからだ。 第一の定理は、連続微分可能な(C1 級の)埋め込みに対するものであり、第二の定理は、解析的な埋め込みと、3 ≤ k ≤ ∞ に対して Ck 級の滑らかさを持つ埋め込みに関するものである。これらの 2つの定理は、互いに非常に異なっている。第一の定理は非常に容易に証明でき、非常に反直感的な結果を導くが、一方第二の定理の証明は非常に技巧的であるが結果はそれほど驚くようなものではない。 C1 定理は1954年に、Ck 定理は1956年に出版された。実解析的な定理は最初ナッシュにより1966年に扱われた。彼の議論は により非常に簡素化された。(この結果の局所版は、1920年代にエリ・カルタン (Élie Cartan) と (Maurice Janet) により証明された。)実解析的な場合は、ナッシュの逆関数の議論における smoothing operator(以下を参照)を、コーシーの評価に取り替えることができる。Ck の場合のナッシュの証明は、後に、 (h-principle) や (Nash–Moser implicit function theorem) へ拡張された。第二のナッシュの埋め込み定理の簡素化された証明は、 により得られた。彼は非線型偏微分方程式系を楕円系に帰着させ、が適用できるようにした。. リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

ナッシュの埋め込み定理とリーマン幾何学間の類似点

ナッシュの埋め込み定理とリーマン幾何学は(ユニオンペディアに)共通で3ものを持っています: 埋め込み (数学)ユークリッド空間リーマン多様体

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

ナッシュの埋め込み定理と埋め込み (数学) · リーマン幾何学と埋め込み (数学) · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ナッシュの埋め込み定理とユークリッド空間 · ユークリッド空間とリーマン幾何学 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

ナッシュの埋め込み定理とリーマン多様体 · リーマン多様体とリーマン幾何学 · 続きを見る »

上記のリストは以下の質問に答えます

ナッシュの埋め込み定理とリーマン幾何学の間の比較

リーマン幾何学が40を有しているナッシュの埋め込み定理は、23の関係を有しています。 彼らは一般的な3で持っているように、ジャカード指数は4.76%です = 3 / (23 + 40)。

参考文献

この記事では、ナッシュの埋め込み定理とリーマン幾何学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »