ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

リーマン幾何学の基本定理

索引 リーマン幾何学の基本定理

リーマン幾何学において、リーマン幾何学の基本定理(fundamental theorem of Riemannian geometry)は、任意のリーマン多様体(あるいは、擬リーマン多様体)には、捩れのない計量接続が一意的に存在するという定理である。この接続は、与えられた計量のレヴィ・チヴィタ接続(Levi-Civita connection)と呼ばれる。ここに、計量接続(あるいは、リーマン接続)は、計量テンソルを保存する接続である。正確には、 リーマン幾何学の基本定理:(M, g) をリーマン多様体(あるいは、擬リーマン多様体)とすると、一意に次の条件を満たす接続 ∇ が存在する。.

11 関係: 平行移動作用 (物理学)ナッシュの埋め込み定理リーマン多様体リーマン幾何学ベクトル場アフィン接続共変微分計量テンソル捩れテンソル擬リーマン多様体

平行移動

ユークリッド幾何学における平行移動(へいこういどう、translation)は全ての 点を決まった方向に一定の距離だけ動かす写像である。 物理学における平行移動は並進運動 (translational motion) と呼ばれる。.

新しい!!: リーマン幾何学の基本定理と平行移動 · 続きを見る »

作用 (物理学)

物理学における作用(さよう、action)は、の動力学的な性質を示すもので、数学的には経路トラジェクトリとか軌道とも呼ばれる。を引数にとる実数値の汎関数として表現される。一般には、異なる経路に対する作用は異なる値を持つ。古典力学においては、作用の停留点における経路が実現される。この法則を最小作用の原理と呼ぶ。 作用は、エネルギーと時間の積の次元を持つ。従って、国際単位系 (SI) では、作用の単位はジュール秒 (J⋅s) となる。作用の次元を持つ物理定数としてプランク定数がある。そのため、プランク定数は作用の物理的に普遍な単位としてしばしば用いられる。なお、作用と同じ次元の物理量として角運動量がある。 物理学において「作用」という言葉は様々な意味で用いられる。たとえば作用・反作用の法則や近接作用論・遠隔作用論の中で論じられる「作用」とは物体に及ぼされる力を指す。本項では力の意味での作用ではなく、解析力学におけるラグランジアンの積分としての作用についてを述べる。.

新しい!!: リーマン幾何学の基本定理と作用 (物理学) · 続きを見る »

ナッシュの埋め込み定理

ョン・フォーブス・ナッシュ (John Forbes Nash) の名に因んだナッシュの埋め込み定理 (Nash embedding theorems (or imbedding theorems)) は、すべてのリーマン多様体はユークリッド空間の中へ等長に埋め込むことができるという定理である。等長とは、すべてのの長さが保存されることを意味する。例えば、紙のページを引き伸ばしたり破ったりすることなしに折り曲げると、ページのユークリッド空間へのになる。ページに描かれた曲線はページが折り曲げられても同じ長さのままであるからだ。 第一の定理は、連続微分可能な(C1 級の)埋め込みに対するものであり、第二の定理は、解析的な埋め込みと、3 ≤ k ≤ ∞ に対して Ck 級の滑らかさを持つ埋め込みに関するものである。これらの 2つの定理は、互いに非常に異なっている。第一の定理は非常に容易に証明でき、非常に反直感的な結果を導くが、一方第二の定理の証明は非常に技巧的であるが結果はそれほど驚くようなものではない。 C1 定理は1954年に、Ck 定理は1956年に出版された。実解析的な定理は最初ナッシュにより1966年に扱われた。彼の議論は により非常に簡素化された。(この結果の局所版は、1920年代にエリ・カルタン (Élie Cartan) と (Maurice Janet) により証明された。)実解析的な場合は、ナッシュの逆関数の議論における smoothing operator(以下を参照)を、コーシーの評価に取り替えることができる。Ck の場合のナッシュの証明は、後に、 (h-principle) や (Nash–Moser implicit function theorem) へ拡張された。第二のナッシュの埋め込み定理の簡素化された証明は、 により得られた。彼は非線型偏微分方程式系を楕円系に帰着させ、が適用できるようにした。.

新しい!!: リーマン幾何学の基本定理とナッシュの埋め込み定理 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: リーマン幾何学の基本定理とリーマン多様体 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: リーマン幾何学の基本定理とリーマン幾何学 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: リーマン幾何学の基本定理とベクトル場 · 続きを見る »

アフィン接続

数学の一分野である微分幾何学において、アフィン接続(affine connection)は、滑らかな多様体を幾何学的対象としている。そこでは、近くの接空間どうしを接続し、あたかも固定されたベクトル空間に値を持つ多様体上の函数であるかのように、接ベクトル場を微分とみなす。アフィン接続の考え方は、19世紀の幾何学とテンソル解析に起源を持つ。エリ・カルタン(Élie Cartan)(という一般理論の一部として)とヘルマン・ワイル(Hermann Weyl)(一般相対論の基礎付けの一部として)により研究された1920年代に、アフィン接続は完全に開発された。用語は、カルタンによるもので、ある変換によりユークリッド空間 Rn の中で接空間どうしを同一視することに起源を持つ。アフィン接続を選択すると、無限小では多様体を滑らかではないがアフィン空間のようにユークリッド空間を見ることができるというアイデアである。 滑らかな多様体上には無限個のアフィン接続が存在する。さらに多様体がリーマン計量を持つと、アフィン接続を自然に選択することができ、この接続をレヴィ・チヴィタ接続と呼ぶ。アフィン接続を選択することは、(接)ベクトル場を規定することと同値であり、合理的な性質(線型性やライプニッツ則)を満たす。このことは、接バンドル上の共変微分や(線型)接続として、アフィン接続が妥当な定義であることを意味する。アフィン接続の選択は、曲線に沿って変換する接ベクトルを意味するの考え方と同値でもある。このことはまた、上の平行性を持つ変換を定義する。標構バンドル上の無限小平行移動は、アフィン接続、アフィン群の、あるいは、標構バンドル上の接続の別の記述であることをも意味する。 アフィン接続の主な不変量は、捩れと曲率である。捩れはどのようにして、ベクトル場のリーブラケットがアフィン接続から再現可能かを測る。アフィン接続は、多様体の(アフィン)測地線を定義することに使われる。ここで使われる直線の幾何学である測地線は、通常のユークリッド幾何学からは非常に異なるにもかかわらず、ユークリッド空間の直線の一般化となっている。直線と測地線との違いは、測地線が接続の曲率の中に全ての情報をカプセル化していることである。 n by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

新しい!!: リーマン幾何学の基本定理とアフィン接続 · 続きを見る »

共変微分

微分幾何学における共変微分(きょうへんびぶん、covariant derivative)とは、可微分多様体上の微分演算を言う。クリストッフェル並びにレヴィ=チヴィタ、リッチによって導入された。局所表示をとった場合その変換規則は共変(covariant)となる。.

新しい!!: リーマン幾何学の基本定理と共変微分 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: リーマン幾何学の基本定理と計量テンソル · 続きを見る »

捩れテンソル

微分幾何学では、捩れ(torsion)とは、曲線に関する(moving frame)のツイストや捩れ方を特徴づける方法のことをいう。曲線の捩れ(torsion of a curve)は、たとえばフレネ・セレの公式に現れるように、曲線の捩れ具合を、曲線の発展として接ベクトルについての量(むしろ、フレネ・セレの標構の接ベクトルについての回転)として測る。曲面の幾何学では、測地線の捩れ(geodesic torsion)は、どのように曲面がその上の曲線について捩れているかを記述する。曲率の考えは、どのくらい動標構が捩れることなく曲線に沿って「回っている」かを測る。 さらに一般的には、アフィン接続(つまり、接バンドル上の(connection)のこと)をもつ微分可能多様体上では、捩れ形式や曲率形式は、接続の基本不変量である。この脈絡では、曲線に沿って(parallel transport)すると、接空間がどのくらい捩れるかを本質的に特徴つける量が捩れである。一方、曲率はどれくらい接空間が曲線にそって回るかを記述するようである。捩れは具体的にテンソル、多様体上の(vector-valued) 2-形式として表わされる。∇ を微分可能多様体上のアフィン接続形式とすると、捩れテンソルは、ベクトル場 X と Y により、 と定義される。ここに は(Lie bracket of vector fields)である。 捩れは、測地線の幾何学の研究にとって特に有用である。パラメータ化された測地線の系が与えられると、捩れの違いによる差異はあるが、それらの測地線を持つアフィン接続のクラスを特定することができる。((Finsler geometry)のように、)計量を持たない状況下でも可能な、レヴィ・チヴィタ接続を一般化となる捩れを併せ持つような接続が一意に存在する。また、捩れを併せ持つことは、(G-structure)や(Cartan's equivalence method)の研究で、重要な役割を果たす。 捩れは、また、捩れ形式に伴う(projective connection)を通してパラメータ付けを持たない測地線の族の研究にも有用である。相対論では、捩れ形式の考えは(Einstein–Cartan theory)の形で、理論の中に実現されている。 T(X,Y).

新しい!!: リーマン幾何学の基本定理と捩れテンソル · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: リーマン幾何学の基本定理と擬リーマン多様体 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »