ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ユニタリ表現

索引 ユニタリ表現

数学において、群 のユニタリ表現(unitary representation)とは、複素ヒルベルト空間 上の の線型表現 であって、 が任意の に対してユニタリ作用素となるようなものである。一般論は が局所コンパクト(ハウスドルフ)位相群であり表現がである場合にはよく発展している。 理論は1920年代から量子力学において広く応用されており、とくにヘルマン・ワイルの1928年の本 に影響を受けている。応用において有用な特定の群だけでなく任意の群 に対してユニタリ表現の一般論を構成したパイオニアの1人はであった。.

33 関係: 半単純環半双線型形式定符号二次形式局所コンパクト空間不変部分空間位相空間位相群マシュケの定理ハウスドルフ空間ポントリャーギン双対ユニタリ変換ユニタリ作用素リー代数リー群ヘルマン・ワイルプランシュレルの定理ヒルベルト空間コンパクト群スペクトル理論簡約群群 (数学)群環直交補空間表現論調和解析量子力学離散空間楕円型作用素正則表現測度論既約表現数学普遍包絡代数

半単純環

数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。.

新しい!!: ユニタリ表現と半単純環 · 続きを見る »

半双線型形式

数学の特に線型代数学における 上の半双線型形式(はんそうせんけいけいしき、sesquilinear form; 準双線型形式。)とは、写像 で一方の引数に関して線型かつ他方の引数に関してとなるようなものを言う。名称は「1 と 1/2」を意味するラテン語の ''sesqui-'' に由来する。これと対照して、双線型形式は両引数に関して線型であることを意味するが、特に専ら複素数体上の空間を扱うような多くの文献において、半双線型形式の意味で「双線型形式」と呼ぶものがある。 動機付けとなる例は複素ベクトル空間上の内積で、これは双線型ではないがその代わり半双線型である。後述の幾何学的動機付けの節も参照。.

新しい!!: ユニタリ表現と半双線型形式 · 続きを見る »

定符号二次形式

数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号(positive definite; 正値、正定値)または負の定符号(negative definite; 負値、負定値)に分けられる。 半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて同様に定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite) であると言う。 より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる。.

新しい!!: ユニタリ表現と定符号二次形式 · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: ユニタリ表現と局所コンパクト空間 · 続きを見る »

不変部分空間

線形写像T: V→VについてV の部分空間W がT(W)⊂Wを満たすとき、W をT の不変部分空間(ふへんぶぶんくうかん)と呼ぶ。.

新しい!!: ユニタリ表現と不変部分空間 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ユニタリ表現と位相空間 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: ユニタリ表現と位相群 · 続きを見る »

マシュケの定理

数学、特に群の表現論においてマシュケの定理(マシュケのていり、Maschke's theorem)とは、有限群の表現の既約表現への分解に関する定理である。ハインリヒ・マシュケに名を因む。有限群 G のある標数 0 の体上の有限次元表現 (V, ρ) に対し、任意の G-不変部分空間 U は G-不変な直和補因子 W を持つこと、言い換えれば、表現 (V, ρ) が完全可約であることを述べるものである。より一般に、有限体のような正標数 p の体に対しても、p が群 G の位数を割り切らないならば、マシュケの定理は成り立つ。.

新しい!!: ユニタリ表現とマシュケの定理 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: ユニタリ表現とハウスドルフ空間 · 続きを見る »

ポントリャーギン双対

数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば.

新しい!!: ユニタリ表現とポントリャーギン双対 · 続きを見る »

ユニタリ変換

数学において、ユニタリ変換(ユニタリへんかん)とは、2つのベクトルの内積の値が変換の前後で変わらないような変換である。.

新しい!!: ユニタリ表現とユニタリ変換 · 続きを見る »

ユニタリ作用素

数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の線型空間の構造、内積構造およびそこから定まる位相構造)を保つ全単射である。与えられたヒルベルト空間 からそれ自身へのユニタリ作用素全体の成す集合は群を成し、 のヒルベルト群 と呼ばれることもある。.

新しい!!: ユニタリ表現とユニタリ作用素 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: ユニタリ表現とリー代数 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: ユニタリ表現とリー群 · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: ユニタリ表現とヘルマン・ワイル · 続きを見る »

プランシュレルの定理

数学におけるプランシュレルの定理(プランシュレルのていり、Plancherel theorem)は、1910年にの得た調和解析における結果で、函数の平方絶対値 (squared modulus) の積分は、その周波数スペクトルの平方絶対値の積分に等しいことを述べるものである。 より明確に定式化すると、函数が ''L''1('''R''') にも L2(R) にも属するならば、そのフーリエ変換は L2(R) に属し、フーリエ変換写像は L2-ノルムに関して等距変換になる。このことから、フーリエ変換写像を L1(R) ∩ L2(R) に制限したものは、線型等距変換写像 L2(R) → L2(R) に一意的に拡張できることがわかる。この等距変換は実際にはユニタリ作用素になる。実質的に、これは自乗可積分函数のフーリエ変換について考えることを可能にするものである。 プランシュレルの定理は n-次元ユークリッド空間 Rn 上の主張としてもやはり有効である。またより一般に局所コンパクト可換群に対してもこの定理は成立する。非可換な局所コンパクト群についても適当な技術的仮定を満足するものについては、プランシュレルの定理の一種で意味を持つようなものが存在するが、これは非可換調和解析に属する主題である。 フーリエ変換のユニタリ性は、自然科学や工学の分野でしばしばパーシヴァルの定理 と呼ばれる。これは旧来の(より一般性の少ない)フーリエ級数のユニタリ性を示した結果の名称の流用である。.

新しい!!: ユニタリ表現とプランシュレルの定理 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ユニタリ表現とヒルベルト空間 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: ユニタリ表現とコンパクト群 · 続きを見る »

スペクトル理論

数学において、スペクトル理論(スペクトルりろん、spectral theory)とは、正方行列の固有ベクトル、固有値に関する理論の無限次元への拡張を指す。 スペクトル理論の名称は、ダフィット・ヒルベルトが自身のヒルベルト空間論の定式化に際して、“無限個の変数を持つ二次形式”に対応する固有値をスペクトルと呼んだことに由来する。スペクトル定理は、楕円体の主軸に関する定理の無限次元への拡張として考えられた。量子力学において、離散スペクトルの特徴をスペクトル理論を用いて説明できることが思いがけず知られるようになるが、それは後の時代の話である。.

新しい!!: ユニタリ表現とスペクトル理論 · 続きを見る »

簡約群

数学における簡約群(reductive group)とは冪単根基が自明となる代数閉体上の代数群のことである。代数的トーラスや一般線形群など任意の半単純代数群は簡約となる。一般の代数体上の場合には、代数閉包上で冪単根基が自明となるような滑らかなアフィン代数群を簡約代数群と呼ぶ。ここで代数閉包への移行は、定義体が有限体上の関数体などの不完全体(imperfect field)となる場合に必要である。(必ずしも完全でない)体 k 上の代数群で k-冪単根基が自明となるものは:en:pseudo-reductive groupと呼ばれる。簡約群の名称は線形表現の完全可約性から来ており、標数0の代数群の表現に対して成り立つ性質である。(これは代数群としての表現にのみ適応される。離散群としての有限次元表現は標数0の場合でさえ必ずしも完全可約にならない。)Haboushの定理は、幾何学的簡約性と呼ばれるより弱い条件が正標数の場合の簡約群に対しても成立していることを示す。 G ≤ GLn を滑らかなk-閉部分群としたとき、k 上の n 次元アフィン空間への作用が既約であるならば G は簡約である。 そのため GLn 及び SLn は簡約である(後者はより強く半単純となる)。.

新しい!!: ユニタリ表現と簡約群 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ユニタリ表現と群 (数学) · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: ユニタリ表現と群環 · 続きを見る »

直交補空間

数学の線型代数学および関数解析学の分野において、部分線型空間の直交補空間(ちょっこうほくうかん、; perp)とは、その部分空間内のすべてのベクトルと直交するようなベクトル全体の成す集合を言い、直交補空間はそれ自身部分線型空間を成す。.

新しい!!: ユニタリ表現と直交補空間 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: ユニタリ表現と表現論 · 続きを見る »

調和解析

数学の一分野としての調和解析(ちょうわかいせき、Harmonic analysis)は、関数や信号を基本波の重ね合わせとして表現することに関わるもので、フーリエ級数やフーリエ変換及びその一般化について研究する分野である。19世紀から20世紀を通じて、調和解析の扱う主題は広く、応用も信号処理、量子力学、神経科学など多岐にわたる。 「調和 (harmonic)」の語は、もとは物理的な固有値問題から来たもので、(楽器の弦における調和振動の周波数のように)周波数が他の周波数の整数倍となっているような波を意図したものであるが、現在ではその原義を超えて一般化した使い方をされる。 上の古典フーリエ変換は未だ活発な研究の成されている領域であり、特により一般の緩増加超関数などの対象についてのフーリエ変換に関心が持たれる。例えば、シュワルツ超関数 に適当な仮定を課すときに、それらの仮定を のフーリエ変換に関する仮定に翻訳することを考えることができる。はその一例である。ペイリー・ウィーナーの定理からすぐに従うことに、 がコンパクト台を持つ非零超関数(これにはコンパクト台を持つ関数ももちろん含まれる)ならばそのフーリエ変換がコンパクト台を持つことは起こりえない。これは調和解析的な設定のもとでの非常に初等的な形の不確定性原理と言うことができる(フーリエ級数の収束も参照)。 フーリエ級数はヒルベルト空間論の文脈でも有効に調べられており、調和解析と関数解析学とを結ぶものとなっている。.

新しい!!: ユニタリ表現と調和解析 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ユニタリ表現と量子力学 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: ユニタリ表現と離散空間 · 続きを見る »

楕円型作用素

数学の偏微分方程式の理論において、楕円型作用素(だえんがたさようそ、)とは、ラプラス作用素を一般化した微分作用素のことを言う。最高次の微分の係数が正であるという条件によって定義され、このことは主表象が可逆であるか、または同値であるが、実の特性方向が存在しないという重要な性質を意味する。 楕円型作用素は、ポテンシャル論において典型的に現れるものであり、静電気学や連続体力学において頻繁に用いられる。楕円型正則性は、解が(作用素の係数が滑らかであれば)滑らかな函数になる傾向にあることを意味する。双曲型偏微分方程式や放物型偏微分方程式の定常解は一般に楕円型方程式によって解かれる。.

新しい!!: ユニタリ表現と楕円型作用素 · 続きを見る »

正則表現

*正規表現 (regular expression) の別名.

新しい!!: ユニタリ表現と正則表現 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: ユニタリ表現と測度論 · 続きを見る »

既約表現

数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表現は常に直既約である(すなわち、別の表現の直和にかくことができない)であり、この二つはしばしば混同されるが、例えば上半三角冪零行列として作用する実数の二次元表現など、一般には可約だが直既約な表現が無数に存在する。.

新しい!!: ユニタリ表現と既約表現 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ユニタリ表現と数学 · 続きを見る »

普遍包絡代数

(普遍)包絡代数(ふへんほうらくだいすう、universal enveloping algebra, algèbre enveloppante)あるいは(普遍)展開代数とは、任意のリー代数 \mathfrak から構成される、ある性質を満たす単位的結合代数 U(\mathfrak) と準同型写像 i\colon\mathfrak\to U(\mathfrak) の組 (U(\mathfrak), i) のことをいう。.

新しい!!: ユニタリ表現と普遍包絡代数 · 続きを見る »

ここにリダイレクトされます:

ユニタリ双対実リー代数のユニタリ表現既約ユニタリ表現

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »