ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

数学

索引 数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

189 関係: 力学系偶数十六元数双子素数合同数天文現象変化奇数学問定理定義定規とコンパスによる作図実解析実験実数小数巨大数中心極限定理中国の剰余定理三平方の定理三角法一般相対性理論幾何学座標代数学代数学の基本定理代数幾何学代数的位相幾何学代数方程式位相幾何学位相空間形式科学微分幾何学微分位相幾何学微分積分学微分積分学の基本定理微分方程式保険数理応用数学圏論ネヴァンリンナ賞バーチ・スウィンナートン=ダイアー予想ポアンカレ予想モノイドモデル理論ユークリッド原論ユークリッド幾何学ヨーロッパ数学会ヨーロッパ数学会賞リーマン予想...ヴェブレン賞パズルヒルベルトの23の問題ピタゴラスの定理ツォルンの補題フラクタル幾何フィールズ賞フェルマーの最終定理ニコラ・ブルバキダフィット・ヒルベルトベクトル解析分数和算アメリカ数学会アラビア数学アルゴリズム情報理論アーベル賞アブストラクト・ナンセンスインドの数学ウルフ財団ウルフ賞数学部門オイラーの等式カントールの対角線論法カオス理論ガロア理論ガウス賞グラフ理論ゲーム理論ゲーデルの不完全性定理コラッツの問題コンピュータコンピュータネットワークコール賞ゴールドバッハの予想システム哲学者八元数公理図形図形の一覧国際数学連合四元数四色定理確率論空間算術範囲素数純粋数学線型代数学線型位相空間群 (数学)群論統計学組合せ数学点 (数学)無理数無限物理学芸術非ユークリッド幾何学順序集合順序数複素解析複素数観察解析学解析幾何学計算計算可能性理論計算理論計算科学計算複雑性理論計算機計算機科学言語論理学超実数超数学農耕関数 (数学)関数一覧関数空間関数解析学量子力学自然科学自然数離散数学集合論連続 (数学)連続体仮説逆問題逆数学虚数P≠NP予想P進数抽象代数学暗号理論推論規則概念構造測量濃度 (数学)有理数情報工学情報理論春季賞方法論文化史日本数学会数学基礎論数学原論数学に関する記事の一覧数学の哲学数学の競技数学史数学定数数学上の未解決問題数学的な美数学的直観主義数学的構造数学記号の表数学者数列数値解析数理工学数理心理学数理モデル数理経済学数理生物学数理物理学数理論理学数秘術数論整数普遍代数学 インデックスを展開 (139 もっと) »

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: 数学と力学系 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: 数学と偶数 · 続きを見る »

十六元数

抽象代数学における十六元数(じゅうろくげんすう、sedenion)は、全体として実数体 上次元の(双線型な乗法を持つベクトル空間という意味での)非結合的分配多元環を成す代数的な対象で、その全体はしばしば で表される。八元数にケーリー=ディクソンの構成法を使って得られる対合的二次代数である。 「十六元数」という用語は、他の十六次元代数構造、例えば四元数の複製二つのテンソル積や実数体上の四次正方行列環などに対しても用いられ、 で調べられている。.

新しい!!: 数学と十六元数 · 続きを見る »

双子素数

双子素数(ふたごそすう、twin prime)とは、差が 2 である2つの素数の組のことである。組 を除くと、双子素数は最も近い素数の組である。双子素数を小さい順に並べた列は である。.

新しい!!: 数学と双子素数 · 続きを見る »

合同数

合同数(ごうどうすう)とは、辺の長さがすべて有理数である直角三角形の面積のことである。例えば、辺の長さが (3, 4, 5) の直角三角形の面積 6 や、(3/2, 20/3, 41/6) の面積 5 は合同数である。しかし、1, 2, 3, 4 は合同数ではない。.

新しい!!: 数学と合同数 · 続きを見る »

天文現象

天文現象(てんもんげんしょう)とは、天(この「天」には空や大気圏の上層部や宇宙空間までもが含まれる)に現れる様々な現象の総称。これを文様(模様、綾)に見立てて天文といい、周期的な変化を調べて暦や卜占に利用した。『易経』賁の卦の「天文を観て以て時の変を察す」、繫辞伝の「仰いで以て天文を観、俯して以て地理を察す。是の故に幽明の故を知る」に由来するとされる。天象とも。 これらは観天望気の対象であったが後に気象とは区別されて天体観測が専らとなり、特に惑星の運行は洋の西と東を問わず天文学者により詳細に調べられた。望遠鏡の発明により太陽や月以外も明確に天体として認識されるようになると、物理学の一分野として発展を遂げ(→天体物理学)、以降の天文学は恒星を含む宇宙の諸現象を研究する自然科学の分野となった。一方の卜占からは学問的な裏付けが排除されたが、信仰や迷信の一部として現代でも広く残る。 現代の天体観測は実業のみでなくレクリエーションにもなっている(天体観望)。.

新しい!!: 数学と天文現象 · 続きを見る »

変化

変化(へんか、へんげ).

新しい!!: 数学と変化 · 続きを見る »

奇数

奇数(きすう、 odd number)とは、2で割り切れない整数のことをいう。一方、2で割り切れる整数のことは、偶数という。−15, −3, 1, 7, 19 などは全て奇数である。 10進法では、一の位が 1, 3, 5, 7, 9 である数は奇数である。2進法では、20 の位(すなわち一の位)が 1 ならば奇数で、0 ならば偶数である。一般に 2n 進法(n は自然数)において、ある数が偶数であるか奇数であるかは、一の位(n0 の位)を見るだけで判別できる。 偶数と奇数は、位数が2の体の例を与える。.

新しい!!: 数学と奇数 · 続きを見る »

学問

学問(がくもん)とは、一定の理論に基づいて体系化された知識と方法であり、哲学や歴史学、心理学や言語学などの人文科学、政治学や法律学などの社会科学、物理学や化学などの自然科学などの総称。英語ではscience(s)であり、science(s)は普通、科学と訳す。なお、学問の専門家を一般に「学者」と呼ぶ。研究者、科学者と呼ばれる場合もある。.

新しい!!: 数学と学問 · 続きを見る »

定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

新しい!!: 数学と定理 · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 数学と定義 · 続きを見る »

定規とコンパスによる作図

定規とコンパスによる作図(じょうぎとコンパスによるさくず)とは、定規とコンパスだけを有限回使って図形を描くことを指す。ここで、定規は2点を通る直線を引くための道具であり、目盛りがついていても長さを測るのには使わないものとし、コンパスは与えられた中心と半径の円を描くことができる道具である。この文脈における「定規」はしばしば「定木」と表記される。定規とコンパスによる作図可能性(作図不可能性)の問題として有名なものにギリシアの三大作図問題がある。 数学的には、定規とコンパスによる作図で表せるのは二次方程式を繰り返し解いて得られる範囲の数であることが知られている。つまり、いくつかの二次方程式や一次方程式に帰着出来る問題は定規とコンパスのみで作図可能であり、反対に帰着できない問題は作図不可能である。「作図可能な線分の長さ」の集合は一つの体をなしている。.

新しい!!: 数学と定規とコンパスによる作図 · 続きを見る »

実解析

数学において実解析(じつかいせき、Real analysis)あるいは実関数論(じつかんすうろん、theory of functions of a real variable)は(ユークリッド空間(の部分集合)上または(抽象的な)集合上の関数)について研究する解析学の一分野である。現代の実解析では、関数として一般に複素数値関数や複素数値写像あるいは複素数値関数に値をとる写像も含む。 実解析は、元々は実1変数実数値関数あるいは実多変数実数値およびベクトルに対する初等的な微分積分を意味していた。しかし現代の実解析は、積分論のいちぶとして測度論とルベーグ積分、関数空間((超)関数の成す線型位相空間)の理論、関数不等式、特異積分作用素などを扱う。関数解析におけるバナッハ空間の理論や作用素論・調和解析のフーリエ解析などの初歩的または部分的な理論も含むとされている。 関数空間の例には、L^p空間・数列空間・ソボレフ空間・緩増加超関数の空間・ベゾフ空間・トリーベル-リゾルキン空間・実解析版ハーディー空間・実補間空間がある。関数不等式の例には、作用素の実補間または複素補間による作用素または関数の有界性の調整・関数方程式について、初期値または非斉次項(非線型項)と未知関数の、有界性や可積分性または可微分性の関係を表すL^p-L^q評価と時空分散評価および時空消散評価・時間の経過に対する、関数の可微分性または可積分性を保存する意味を持つエネルギー(不)等式などの(解の存在を前提とした)評価式(アプリオリ評価)・別々の作用素を施された関数のノルムの関係、などがある。特異積分作用素には、「積分と微分を同時にする」リース変換や、流体力学と発展方程式の理論で現れるヒルベルト変換がある。 超関数とフーリエ変換は、実解析に入るのか関数解析に入るのか数学者の間でも扱いが分かれている。さらに今ではユークリッド空間だけではなく抽象的な集合(群または位相空間あるいは関数空間など)で定義された複素数値の写像(複素数値測度、複素数値線型汎関数)も取り扱う。そして特異積分作用素を扱う理論は「関数解析」における作用素論ではなく「実解析」として扱われている。複素解析の実解析への応用は(留数定理による実関数の積分の計算が)有名だが、実解析の複素解析への応用(その計算にルベーグの収束定理を適用することによる簡易化;フーリエ変換による複素解析版ハーディー空間とL^p関数の関係など)もある。現代数学では「実解析」の範囲は明確ではなく「複素解析」とは対をなす分野ではなくなっている。 また、実解析による偏微分微分方程式の解法は、主に関数空間と関数不等式およびフーリエ変換や特異積分作用素によるもので、解が具体的に表示できることも多いが計算が多くなる場面も多い。関数解析の作用素により論理を重ねる方法(例えば、リースの表現定理・変分法・半群理論・リース-シャウダーの理論・スペクトル分解などを使う解の存在証明)とは異なるが、高等的には両者を巧みに合わせて(関連しながら)解かれている。.

新しい!!: 数学と実解析 · 続きを見る »

実験

実験(じっけん、)は、構築された仮説や、既存の理論が実際に当てはまるかどうかを確認することや、既存の理論からは予測が困難な対象について、さまざまな条件の下で様々な測定を行うこと。知識を得るための手法の一つ。 実験は観察(測定も含む)と共に科学の基本的な方法のひとつである。ただ、観察が対象そのものを、その姿のままに知ろうとするのに対して、実験ではそれに何らかの操作をくわえ、それによって生じる対象に起こる変化を調べ、そこから何らかの結論を出そうとするものである。ある実験の結果が正しいかどうかを確かめることを追試という。 工学においては、規範的実験と設計的実験とに分類できる。.

新しい!!: 数学と実験 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 数学と実数 · 続きを見る »

小数

小数(しょうすう,decimal)とは、位取り記数法と小数点を用いて実数を表現するための表記法である。.

新しい!!: 数学と小数 · 続きを見る »

巨大数

巨大数(きょだいすう)とは、日常生活において使用される数よりも巨大な数(実数)のことである。非常に巨大な数は、数学、天文学、宇宙論、暗号理論、インターネットやコンピュータなどの分野でしばしば登場する。天文学的数字(てんもんがくてきすうじ)と呼ばれることもある。 なお、巨大数に対して、0ではないが0に限りなく近い正の実数のことを微小数(びしょうすう)という。 後述のように、巨大な数(や微小な数)を処理するために特殊な数学記号が使われている。.

新しい!!: 数学と巨大数 · 続きを見る »

中心極限定理

中心極限定理(ちゅうしんきょくげんていり、central limit theorem)は、確率論・統計学における極限定理の一つ。 大数の法則によると、ある母集団から無作為抽出された標本平均はサンプルのサイズを大きくすると真の平均に近づく。これに対し中心極限定理は標本平均と真の平均との誤差を論ずるものである。多くの場合、母集団の分布がどんな分布であっても、その誤差はサンプルのサイズを大きくしたとき近似的に正規分布に従う。 なお、標本の分布に分散が存在しないときには、極限が正規分布と異なる場合もある。 統計学における基本定理であり、例えば世論調査における必要サンプルのサイズの算出等に用いられる。.

新しい!!: 数学と中心極限定理 · 続きを見る »

中国の剰余定理

loc.

新しい!!: 数学と中国の剰余定理 · 続きを見る »

三平方の定理

三平方の定理(さんへいほうのていり).

新しい!!: 数学と三平方の定理 · 続きを見る »

三角法

三角法(さんかくほう)とは、三角形の角の大きさと辺の長さの間の関係の研究を基礎として、他の幾何学的図形の各要素の量的関係や、測量などへの応用を研究する数学の学問領域の一つである。様々な数学の分野の中でもきわめて古くから存在し、測量や天文学上の計算などの実用上の要求と密接に関連して生まれたものである(→歴史)。三角法と数表を用いることで、直接に測ることの難しい長さを良い精度で求めることができる(→応用分野)。三角法は平面三角法、球面三角法、その他の三角法に分けられる(→平面三角法、→球面三角法、→その他の三角法)。三角関数は歴史的には三角法から派生して生まれた関数である(→三角関数)。.

新しい!!: 数学と三角法 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 数学と一般相対性理論 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 数学と幾何学 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 数学と座標 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 数学と代数学 · 続きを見る »

代数学の基本定理

代数学の基本定理(だいすうがくのきほんていり、fundamental theorem of algebra)は「次数が 1 以上の任意の複素係数一変数多項式には複素根が存在する」 という定理である。.

新しい!!: 数学と代数学の基本定理 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 数学と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 数学と代数的位相幾何学 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: 数学と代数方程式 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 数学と位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 数学と位相空間 · 続きを見る »

形式科学

形式科学(けいしきかがく、formal science)とは形式体系に関係する科学の総称である。論理学、数学、システム理論に加え、計算機科学、情報理論、ミクロ経済学、統計学、言語学などといった分野の理論ベースの細分野(たとえば計算機科学であれば理論計算機科学)がこれに含まれる。 形式科学で扱うのは記号システムによって記述される抽象的構造であり、結果は公理や理論上のアイデアから推論(純粋な思考の過程)のみによって導き出される。これは、自然科学が現実世界を扱い、観測・観察から得られた知識をもとに結果を導き出すのと対照的である。しかし、形式科学で扱う体系は現実世界のものをモチーフしたものが多い。また、形式科学の結果は自然科学において現実世界を簡潔に理解するための構造(モデル)をつくるのに応用されることが多い。 形式科学で扱う体系は純粋に理論的なものであるので、現実世界そのものではない。しかし、時として「理論的なモデルは現実世界を完全に描写することができる」とか、理論が「現実そのものである」などと信じられてしまうことがある。.

新しい!!: 数学と形式科学 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 数学と微分幾何学 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: 数学と微分位相幾何学 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 数学と微分積分学 · 続きを見る »

微分積分学の基本定理

微分積分学の基本定理(びぶんせきぶんがくのきほんていり、fundamental theorem of calculus)とは、「微分と積分が互いに逆の操作・演算である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。ここで「積分」は、リーマン積分のことを指す。 この事実こそ、発見者のニュートンやライプニッツらを微分積分学の創始者たらしめている重要な定理である。 この定理は主に一変数の連続関数など素性の良い関数に対するものである。これを多変数(高次元)の場合に拡張する方法は一つではないが、ベクトル解析におけるストークスの定理はその一例として挙げられるだろう。また、どの程度病的な関数について定理が成り立つのかというのも意味のある疑問であるといえる。 現在では微分積分学の初期に学ぶ基本的な定理であるが、この定理が実際に発見されたのは比較的最近(17世紀)である。この定理が発見されるまでは、微分法(曲線の接線の概念)と積分法(面積・体積などの求積)はなんの関連性も無い全く別の計算だと考えられていた。.

新しい!!: 数学と微分積分学の基本定理 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 数学と微分方程式 · 続きを見る »

保険数理

保険数理(ほけんすうり)は保険、金融、その他業種や職種にて数学や統計学を用いたリスクアセスメントを行う分野である。 アクチュアリーは学位や実務経験を通じて認定されたこの分野の専門家である。 多くの国の保険数理人は、厳格な試験の通過が義務付けられている。 確率、数学、統計、金融、経済学、金融経済学、プログラミング (コンピュータ)などの分野が関連している。 多くの大学や大学院に保険数理学部がある。2010年の求人情報検索サイトCareerCastが環境、収入、雇用、業務内容、ストレスの5つを基準とした研究によると、米国ではアクチュアリーが最も優れた職業と評価された。 2006年の米国のNews&World Report誌による同様の研究では、将来の需要が見込まれる専門職25種の一つに含まれている。.

新しい!!: 数学と保険数理 · 続きを見る »

応用数学

応用数学(おうようすうがく、英語:applied mathematics)とは、数学的知識を他分野に適用することを主眼とした数学の分野の総称である。 数学のさまざまな分野のどれが応用数学であるかというはっきりした合意があるわけではなく、しばしば純粋数学と対置されるものとして、大まかには他の科学や技術への応用に歴史的に密接に関連してきた分野がこう呼ばれている。なお、過去の高等学校学習指導要領において、科目「応用数学」が存在した。.

新しい!!: 数学と応用数学 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 数学と圏論 · 続きを見る »

ネヴァンリンナ賞

ルフ・ネヴァンリンナ賞(Rolf Nevanlinna Prize)は、計算機科学における優れた数学的貢献をなした研究者に贈られる賞。4年に一度の国際数学者会議において授与され、フィールズ賞と同じく40歳以下の研究者にのみ受賞資格がある。 1981年、国際数学連合が設けた賞で、前年に死去したフィンランドの数学者ロルフ・ネヴァンリンナにちなんで名付けられた。受賞者には金メダルと報奨金が授与される。.

新しい!!: 数学とネヴァンリンナ賞 · 続きを見る »

バーチ・スウィンナートン=ダイアー予想

数学において、バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている。予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。、予想の特別な場合のみ正しいと証明されている。 予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの ''L''-関数 L(E, s) の s.

新しい!!: 数学とバーチ・スウィンナートン=ダイアー予想 · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: 数学とポアンカレ予想 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 数学とモノイド · 続きを見る »

モデル理論

モデル理論(model theory)は、数理論理学による手法を用いて数学的構造(例えば、群、体、グラフ:集合論の宇宙)を研究(分類)する数学の分野である。 モデル理論における研究対象は、形式言語の文に意味を与える構造としてのモデルである。もし言語のモデルがある特定の文または理論(特定の条件を満足する文の集合)を満足するならば、それはその文または理論のモデルと呼ばれる。 モデル理論は代数および普遍代数と関係が深い。 この記事では、無限構造の有限一階モデル理論に焦点を絞っている。有限構造を対象とする有限モデル理論は、扱っている問題および用いている技術の両方の面で、無限構造の研究とは大きく異なるものとなっている。完全性は高階述語論理または無限論理において一般的には成立しないため、これらの論理に対するモデル理論は困難なものとなっている。しかしながら、研究の多くの部分はそのような言語によってなされている。.

新しい!!: 数学とモデル理論 · 続きを見る »

ユークリッド原論

ュリュンコスで発見された『ユークリッド原論』のパピルスの写本断片。紀元100年ごろの作。図は『原論』第2巻の命題5に添えられたもの。 ユークリッド原論(ユークリッドげんろん)は、紀元前3世紀ごろにエジプトのアレクサンドリアの数学者ユークリッドによって編纂されたと言われる数学書『原論』(げんろん、Στοιχεία, ストイケイア、Elements)のことである。著者のユークリッドに関する資料は乏しく実在性を疑う説もあり、原論執筆の地がアレクサンドリアであることに対する明確な根拠も無い。プラトンの学園アカデメイアで知られていた数学の成果を集めて体系化した本と考えられており、論証的学問としての数学の地位を確立した古代ギリシア数学を代表する名著である。古代の書物でありながらその影響は古代に留まらず、後世の人々によって図や注釈が加えられたり翻訳された多種多様な版が作られ続け、20世紀初頭に至るまで標準的な数学の教科書の一つとして使われていたため、西洋の書物では聖書に次いで世界中で読まれてきた本とも評される。英語の数学「Mathematics」の語源といわれているラテン語またはギリシア語の「マテーマタ」(Μαθήματα)は「レッスン(学ばれるべきことども)」という意味であり、このマテーマタを集大成したものが『原論』である。.

新しい!!: 数学とユークリッド原論 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 数学とユークリッド幾何学 · 続きを見る »

ヨーロッパ数学会

ヨーロッパ数学会(英語:European Mathematical Society、略称:EMS)は、ヨーロッパにおける数学の発達を主な活動とするヨーロッパの組織。ヨーロッパの数学系学会、学術機関、および数学者個人から構成される。 1990年にポーランドのワルシャワ近郊にあるMadralinで設立された。2011年現在の会長はバルセロナ大学の統計学教授、マルタ・サンス・ソーレ(Marta Sanz Solé)である。.

新しい!!: 数学とヨーロッパ数学会 · 続きを見る »

ヨーロッパ数学会賞

ヨーロッパ数学会賞 (よおろっぱすうがつかいしよう, European Mathematical Society Prize)とは、ヨーロッパ数学会主催によるヨーロッパ数学者会議において数学者に授与される賞である。 ヨーロッパ数学者会議は4年に1回行なわれ、ヨーロッパ数学会賞は10人の若手数学者に贈られる。 受賞資格はヨーロッパ数学会に所属する各国の数学会の会員であることと、年齢制限があり1992年、1996年、2000年は32歳以下の数学者に贈られた。 2004年からは35歳以下の数学者に対して贈られることになった。賞金額も以前は6000ユーロであったが、2004年からは5000ユーロに減額された。 1992年に創始された日の浅い賞ではあるが、既に受賞者のうち9名がフィールズ賞を受賞しているレベルの高い賞である。 なお、受賞者一覧中の太字は、フィールズ賞受賞者を示す。.

新しい!!: 数学とヨーロッパ数学会賞 · 続きを見る »

リーマン予想

1.

新しい!!: 数学とリーマン予想 · 続きを見る »

ヴェブレン賞

ワルド・ヴェブレン幾何学賞 (Oswald Veblen Prize in Geometry) は、アメリカ数学会から贈られる賞の一つ。オズワルド・ヴェブレンにちなんで創設された。 一般に「ヴェブレン賞」と略して呼ばれることが多い。 幾何学に関する研究において、過去6年間に北米の数学誌に掲載された最も優れた論文の著者に対して授与される。現在の賞金は5000ドルで、アメリカ数学会会員にのみ受賞資格がある。歴代の受賞者にはフィールズ賞受賞者も含まれており、その受賞基準の厳しさから、数学界における最も栄誉ある賞の一つに数えられる。 なお、受賞者一覧中の太字は、フィールズ賞受賞者を示す。.

新しい!!: 数学とヴェブレン賞 · 続きを見る »

パズル

パズル(英語:puzzle)は、あらかじめ出された問題を、論理的な考察と試行錯誤によって解くことを目的とした、ゲームやクイズに似た娯楽の一種。.

新しい!!: 数学とパズル · 続きを見る »

ヒルベルトの23の問題

ヒルベルトの23の問題(ヒルベルトの23のもんだい、)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 とも呼ばれる。 1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された。.

新しい!!: 数学とヒルベルトの23の問題 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 数学とピタゴラスの定理 · 続きを見る »

ツォルンの補題

集合論においてツォルンの補題(ツォルンのほだい、Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。; 命題 (Zorn の補題) この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。.

新しい!!: 数学とツォルンの補題 · 続きを見る »

フラクタル幾何

フラクタル幾何(フラクタルきか)とは、簡単に言えば「どんなに拡大しても複雑な図形」のことをさす。フラクタル図形とも呼ばれる。 フラクタル幾何に関する理論は、そのほとんどが一人の数学者ブノワ・マンデルブロ(Benoit Mandelbrot)によって創作された。彼は海岸線やひび割れの形、樹木の枝分かれなどに見られる複雑な図形を数学的に理論化した。.

新しい!!: 数学とフラクタル幾何 · 続きを見る »

フィールズ賞

フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ人数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863–1932) の提唱によって1936年に作られた賞のことである。.

新しい!!: 数学とフィールズ賞 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 数学とフェルマーの最終定理 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: 数学とニコラ・ブルバキ · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 数学とダフィット・ヒルベルト · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: 数学とベクトル解析 · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

新しい!!: 数学と分数 · 続きを見る »

和算

和算(わさん)は、日本独自に発達した数学である。狭義には大いに発展した江戸時代の関孝和以降のそれを指すが、西洋数学導入以前の数学全体を指すこともある。.

新しい!!: 数学と和算 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 数学とアメリカ数学会 · 続きを見る »

アラビア数学

アラビア数学(アラビアすうがく、Arabic mathematics)とは、8世紀から15世紀のイスラム世界において、主にアラビア語を用いて行われた数学全般のことである。近年ではイスラム数学 (Islamic mathematics) と称される場合もある。名称は慣例によるものであって、必ずしも明確に対象を表しておらず、アラブ地域外でも行われ、担い手にはアラブ人でない者もイスラム教徒でない者もいた。.

新しい!!: 数学とアラビア数学 · 続きを見る »

アルゴリズム情報理論

アルゴリズム情報理論(あるごりずむじょうほうりろん、Algorithmic information theory)は、情報理論と計算機科学の一分野であり、計算理論や情報科学とも関連がある。グレゴリー・チャイティンによれば、「シャノンの情報理論とチューリングの計算複雑性理論をシェイカーに入れて、力いっぱいシェイクしてできたもの」である。.

新しい!!: 数学とアルゴリズム情報理論 · 続きを見る »

アーベル賞

アーベル賞(アーベルしょう)は、顕著な業績をあげた数学者に対して贈られる賞である。 2001年、ノルウェー政府は同国出身である数学者ニールス・アーベルの生誕200年(2002年)を記念して、アーベルの名を冠した新しい数学の賞を創設することを公表し、そのためにニールス・ヘンリック・アーベル基金を創設した。 毎年、ノルウェー科学文学審議会によって任命された5人の数学者からなる委員会が、受賞する人物を決定する。賞金額はスウェーデンのノーベル賞に匹敵し、数学の賞としては最高額である。この賞の主な目的は、数学の分野における傑出した業績に国際的な賞を与えることであり、社会における数学の地位を上げることや、子供たちや若者の興味を刺激することも企図している。 2003年4月、初めての受賞者が公表され、ジャン=ピエール・セールに送られることに決まった(賞金は600万ノルウェークローネ、約1億円)。.

新しい!!: 数学とアーベル賞 · 続きを見る »

アブストラクト・ナンセンス

アブストラクト・ナンセンス(英:abstract nonsense、抽象的ナンセンス)とは、圏論におけるある種の概念や議論を表すのに数学者が好んで使う表現である。 この表現は数学者ノーマン・スティーンロッドによって作られたと信じられている。なおスティーンロッド自身、圏論的視点を築いた一人である。この表現は軽蔑的な称号というよりは、数学的(特に圏論的)にいかに洗練されているか、クールであるかを示すためにアブストラクト・ナンセンスの実践者自身によって用いられるものである。 数学におけるある種のアイデアや構成は多くの領域にわたって有効であり、圏論はそれらを統一的にとらえる枠組みを与える。そのような場合数学者は詳細の入り組んだ議論に立ち入らず、「何々はアブストラクト・ナンセンスにより真である」などとしてしまうのである。典型的な例としては図式追跡を用いた議論、普遍性の導入と応用、関手の自然変換の定義、米田の補題の利用、などなど。 他にも抽象的論法に対する批評でこれほどは好意的でないようなものが記録に残っているのだが、数学の隠語としての地位を獲得するには至っていない。例えば、ポール・ゴーダンは不変式論に於けるダフィット・ヒルベルトの証明をして「これは数学ではなく神学だ」などと述べている。.

新しい!!: 数学とアブストラクト・ナンセンス · 続きを見る »

インドの数学

インドの数学(インドのすうがく、Indian mathematics)とは、紀元前1200年頃から19世紀頃までのインド亜大陸において行われた数学全般を指す。.

新しい!!: 数学とインドの数学 · 続きを見る »

ウルフ財団

ウルフ財団(Wolf Foundation)は、ドイツ出身のユダヤ系キューバ人発明家で元キューバの駐イスラエル大使であったリカルド・ウルフが1975年に設立したイスラエルの民間非営利組織である。.

新しい!!: 数学とウルフ財団 · 続きを見る »

ウルフ賞数学部門

ウルフ賞数学部門(ウルフしょうすうがくぶもん)は、ウルフ賞の一部門であり、優れた業績を上げた数学者に与えられる賞である。.

新しい!!: 数学とウルフ賞数学部門 · 続きを見る »

オイラーの等式

イラーの等式(オイラーのとうしき、Euler's identity)とは、解析学における等式 であり、その名はレオンハルト・オイラーに因む。ここに、 である。.

新しい!!: 数学とオイラーの等式 · 続きを見る »

カントールの対角線論法

ントールの対角線論法(カントールのたいかくせんろんぽう)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カントールによって非可算濃度を持つ集合の存在を示した論文の中で用いられたのが最初だとされている。 その後対角線論法は、数学基礎論や計算機科学において写像やアルゴリズム等が存在しない事を示す為の代表的な手法の一つとなり、例えばゲーデルの不完全性定理、停止性問題の決定不能性、時間階層定理といった重要な定理の証明で使われている。.

新しい!!: 数学とカントールの対角線論法 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: 数学とカオス理論 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 数学とガロア理論 · 続きを見る »

ガウス賞

ウス賞(Carl Friedrich Gauss Prize)は、社会の技術的発展と日常生活に対して優れた数学的貢献をなした研究者に贈られる賞。4年に1度の国際数学者会議(ICM)の開会式において授与される(同時に授賞式が行われるものとしてフィールズ賞とネヴァンリンナ賞がある)。 カール・フリードリヒ・ガウスの生誕225周年を記念し、2002年にドイツ数学会と国際数学連合が共同で設けた賞で、第1回授賞は2006年。その名はガウスが1801年に一旦は発見されながら見失われてしまった小惑星セレスの軌道を最小二乗法の改良により突き止め、再発見を成功させた故事に由来する。 国際数学者会議が他に主催するものとしても有名なフィールズ賞など、一般に数学の賞は純粋な数学的業績(数学分野への貢献)を評価するのに対し、ガウス賞はそれが実際に社会的な技術発展など、数学分野以外に与えた影響・貢献を評価する。例えば第1回の伊藤清の受賞理由である確率微分方程式は、金融工学及び経済学の発展に多大な影響を与えたものである。そのため、実社会に広まる時間差を考慮して、フィールズ賞やネヴァンリンナ賞に見られる受賞資格の年齢制限もない(なお、アーベル賞など年齢制限のない数学の賞は他にもある)。 受賞者には金メダルと賞金が授与される。本賞の基金には1998年にベルリンで開かれた国際数学者会議で生じた余剰金が充てられている。メダルの意匠は表面がガウスの肖像、裏面がセレスの軌道を表す曲線と円(小惑星)、正方形(square:最小二乗法に因む)。.

新しい!!: 数学とガウス賞 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: 数学とグラフ理論 · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: 数学とゲーム理論 · 続きを見る »

ゲーデルの不完全性定理

ーデルの不完全性定理(ゲーデルのふかんぜんせいていり、)又は単に不完全性定理とは、数学基礎論における重要な定理で、クルト・ゲーデルが1930年に証明したものである。;第1不完全性定理: 自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。;第2不完全性定理: 自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。.

新しい!!: 数学とゲーデルの不完全性定理 · 続きを見る »

コラッツの問題

ラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。1937年にローター・コラッツが問題を提示した。問題の結論の予想を指してコラッツの予想と言う。固有名詞に依拠しない表現としては3n+1問題とも言われ、初期にこの問題に取り組んだ研究者の名を冠して、角谷(かくたに)の問題、米田の予想、ウラムの予想、他にはSyracuse問題などとも呼ばれる。数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べ、解決した人に500ドルを提供すると申し出た。 コンピュータを用いた計算により、5 × 260 までには反例がないことが確かめられている。 また、2011年度大学入試センター試験数学IIB第6問に題材として取り上げられた。.

新しい!!: 数学とコラッツの問題 · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: 数学とコンピュータ · 続きを見る »

コンピュータネットワーク

ンピュータネットワーク(computer network)は、複数のコンピュータを接続する技術。または、接続されたシステム全体。コンピュータシステムにおける「通信インフラ」自体、あるいは通信インフラによって実現される接続や通信の総体が(コンピュータ)ネットワークである、とも言える。.

新しい!!: 数学とコンピュータネットワーク · 続きを見る »

コール賞

フランク・ネルソン・コール賞 (Frank Nelson Cole Prize) は、アメリカ数学会から贈られる賞の一つ。「コール賞」と略して呼ばれることが多い。代数部門と数論部門の二つがあり、過去6年間に北米の数学誌に掲載された最も優れた論文の著者に対して授与される。現在の賞金は5000ドルで、アメリカ数学会会員にのみ受賞資格がある。歴代の受賞者にはフィールズ賞受賞者も含まれており、その受賞基準の厳しさから、数学界における最も栄誉ある賞の一つに数えられる。 25年間にわたりアメリカ数学会事務局長を務めたフランク・ネルソン・コールの引退に際し、彼の功績を称えて設立された。賞金は、コールの退職金を基金としている。 なお、受賞者一覧中の太字は、フィールズ賞受賞者を示す。.

新しい!!: 数学とコール賞 · 続きを見る »

ゴールドバッハの予想

ールドバッハの予想(英語:Goldbach's conjecture)とは、次のような加法的整数論上の未解決問題の1つである。ゴールドバッハ予想、ゴルドバッハの予想とも。 この予想は、ウェアリングの問題などと共に古くから知られている。4 × 1018 まで成立することが証明されていて、一般に正しいと想定されているが、多くの努力にもかかわらず未だに証明されていない。 The conjecture has been shown to hold up through 4 × 1018 and is generally assumed to be true, but remains unproven despite considerable effort.-->.

新しい!!: 数学とゴールドバッハの予想 · 続きを見る »

システム

テム(system)は、相互に影響を及ぼしあう要素から構成される、まとまりや仕組みの全体。一般性の高い概念であるため、文脈に応じて系、体系、制度、方式、機構、組織といった多種の言葉に該当する。系 (自然科学) の記事も参照。 それ自身がシステムでありながら同時に他のシステムの一部でもあるようなものをサブシステムという。.

新しい!!: 数学とシステム · 続きを見る »

哲学者

哲学者とは、広義に、哲学を研究する者のことである。「哲学者(フィロソファー)」という語は、「知恵を愛する者」を意味する古代ギリシャ語のφιλόσοφος(フィロソフォス)に由来する。ギリシャの思想家ピタゴラスによって導入された。.

新しい!!: 数学と哲学者 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: 数学と八元数 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 数学と公理 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 数学と図形 · 続きを見る »

図形の一覧

図形とは、様々な形を表現したものである。 ここでは図形を次元で分類するが、まず埋め込み可能なユークリッド空間の次元で分類し、次に位相次元で分類する。たとえば、球面は3次元図形で位相次元は2、コッホ曲線は2次元図形で位相次元は1である。最後に、フラクタル図形を別扱いにし、ハウスドルフ次元(フラクタル次元) dimH を併記する。ハウスドルフ次元は、フラクタル図形では位相次元より大きく、それ以外では位相次元に等しい。主な図形は以下の通り。.

新しい!!: 数学と図形の一覧 · 続きを見る »

国際数学連合

国際数学連合(こくさいすうがくれんごう)は、数学分野での国際的な協力を行う非政府組織である。国際科学会議の構成機関の一つである。 国際数学連合は4年に1度、国際数学者会議(ICM)を主催し、数学のノーベル賞とも呼ばれるフィールズ賞を発表している。65ヶ国の数学に関わる組織から構成される。.

新しい!!: 数学と国際数学連合 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 数学と四元数 · 続きを見る »

四色定理

四色定理(よんしょくていり/ししょくていり、)とは、厳密ではないが日常的な直感で説明すると「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」という定理である。.

新しい!!: 数学と四色定理 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 数学と確率論 · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: 数学と空間 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 数学と算術 · 続きを見る »

範囲

記載なし。

新しい!!: 数学と範囲 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 数学と素数 · 続きを見る »

純粋数学

純粋数学(じゅんすいすうがく、pure mathematics)とは、しばしば応用数学と対になる概念として、応用をあまり意識しない数学の分野に対して用いられる総称である。 数学のどの分野が純粋数学でありどの分野が応用数学であるかという社会的に広く受け入れられた厳密な合意があるわけではなく、区別は便宜的なものとして用いられることが多い。また数学がより広範な範囲で利用されるに従い、分野としての純粋と応用との区別はあいまいで困難なものとなってきている。ただし、純粋数学という用語を用いる場合の志向としては、議論される数学の厳密性、抽象性を基とした数学単体での美しさを重視する傾向がある。.

新しい!!: 数学と純粋数学 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 数学と線型代数学 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 数学と線型位相空間 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 数学と群 (数学) · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 数学と群論 · 続きを見る »

統計学

統計学(とうけいがく、statistics、Statistik)とは、統計に関する研究を行う学問である。 統計学は、経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解釈を行う上での根拠を提供する学問であり、幅広い分野で応用されている。 現在では、医学(疫学、EBM)、薬学、経済学、社会学、心理学、言語学など、自然科学・社会科学・人文科学の実証分析を伴う分野について、必須の学問となっている。また、統計学は哲学の一分科である科学哲学においても重要な一つのトピックになっている。.

新しい!!: 数学と統計学 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 数学と組合せ数学 · 続きを見る »

点 (数学)

数学における点(てん、point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合(点集合)ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。.

新しい!!: 数学と点 (数学) · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 数学と無理数 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 数学と無限 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 数学と物理学 · 続きを見る »

芸術

芸術(げいじゅつ、、 techné、 とは、表現者あるいは表現物と、鑑賞者が相互に作用し合うことなどで、精神的・感覚的な変動を得ようとする活動。文芸(言語芸術)、美術(造形芸術)、音楽(音響芸術)、演劇・映画(総合芸術)などを指す。藝術の略式表記。 Jolene.

新しい!!: 数学と芸術 · 続きを見る »

非ユークリッド幾何学

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。.

新しい!!: 数学と非ユークリッド幾何学 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 数学と順序集合 · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: 数学と順序数 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: 数学と複素解析 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 数学と複素数 · 続きを見る »

観察

観察(かんさつ、)とは、対象の実態を知るために注意深く見ること。その様子を見て、その変化を記録すること。どれだけその変化を見つけられるかが重要である。.

新しい!!: 数学と観察 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 数学と解析学 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: 数学と解析幾何学 · 続きを見る »

計算

計算(けいさん)とは、与えられた情報をもとに、命題に従って演繹することである。 これは人間が無意識のレベルで行っている判断(→判断力)や、動物一般が行っている思考を、計算という形で意識化する手法ともいえ、その意味では「ものを考えること」一般が「計算」の一種だとみなすことも可能である。計算に使用される手続きはアルゴリズムと呼ばれる。対人関係において、戦略をアルゴリズムとして状況を有利に運ぶことも時に「計算」と表現される。 もっとも一般的かつ義務教育の範疇で最初に習うものは、算術(算数)における四則演算を、演算記号に示されたアルゴリズム通りに処理するものである。こういった「計算」は日常生活から専門的分野まで幅広く行われており、これを専門に処理する装置や機械も、人類の歴史において数多く開発され利用されている。.

新しい!!: 数学と計算 · 続きを見る »

計算可能性理論

計算可能性理論(けいさんかのうせいりろん、computability theory)では、チューリングマシンなどの計算模型でいかなる計算問題が解けるか、またより抽象的に、計算可能な問題のクラスがいかなる構造をもっているかを調べる、計算理論や数学の一分野である。 計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。.

新しい!!: 数学と計算可能性理論 · 続きを見る »

計算理論

計算理論(けいさんりろん、theory of computation)は、理論計算機科学と数学の一部で、計算模型やアルゴリズムを理論的にあつかう学問である。計算複雑性理論、計算可能性理論を含む。ここでいう計算 (computation) とは、数学的に表現できる、あらゆる種類の情報処理のこと。 計算を厳密に研究するため、計算機科学では計算模型と呼ばれるコンピュータの数学的抽象化を行う。その手法はいくつかあるが、最も有名なものはチューリングマシンである。チューリングマシンは、言ってみれば無限のメモリを持つコンピュータであるが、一度にアクセスできるメモリ範囲は非常に限られている。チューリングマシンは十分な計算能力を持つモデルでありながら、単純で定式化しやすく、様々な証明に使い易いため、計算機科学者がよく利用する。無限のメモリというのは非現実的な特徴と思われるかもしれないが、より適切な表現を使うならば「無制限」のメモリであって、読み書きしようとした時にそれができればよく、それに対応する「無限な実体」とでも言うべきものが必要なわけではない。「チューリングマシンで、ある問題が解ける」とは必ず有限のステップで計算が終了することを意味し、よってそれに必要なメモリの量は有限である。よって、チューリングマシンで解くことが出来る問題は、現実のコンピュータであっても必要なだけのメモリがあれば解くことが出来る。.

新しい!!: 数学と計算理論 · 続きを見る »

計算科学

最低空軌道 計算科学(けいさんかがく、computational science)は、数学的モデルとその定量的評価法を構築し、計算機を駆使して科学技術上の問題を解決する学問分野である。具体的には、様々な問題の計算機によるシミュレーションやその他の計算手法の適用を指す。.

新しい!!: 数学と計算科学 · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: 数学と計算複雑性理論 · 続きを見る »

計算機

計算機(けいさんき)は、計算を機械的に、さらには自動的に行う装置である。人間が行う計算を援助するのみのものや、手動操作で自動的ではないものなどは計算器という文字表現をすることがある。.

新しい!!: 数学と計算機 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: 数学と計算機科学 · 続きを見る »

言語

この記事では言語(げんご)、特に自然言語について述べる。.

新しい!!: 数学と言語 · 続きを見る »

論理学

論理学(ろんりがく、)とは、「論理」を成り立たせる論証の構成やその体系を研究する学問である。.

新しい!!: 数学と論理学 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 数学と超実数 · 続きを見る »

超数学

超数学(ちょうすうがく)あるいはメタ数学(メタすうがく、)とは、数学自体を研究対象とした数学のこと。超数学という語を初めて用いたのはヒルベルトであり、彼は数学の無矛盾性や完全性を問題とした。ゲーデルの完全性定理や不完全性定理はその例である。.

新しい!!: 数学と超数学 · 続きを見る »

農耕

農耕(のうこう、Farming)とは、ある共同体の食物供給の一端や全体、および他の有用植物の需要を補うために、田畑に作物のもととなる種子・苗・球根などを植えて育て、継続的および循環的にその生産をあげていくための活動や実践のこと。耕作(こうさく)とも。農耕が基本となる社会を農耕社会という。 しばしば農業(agriculture)と混用されるが、「農業は牧畜を含むが農耕は牧畜を含まない」、「農業は産業全体を指すのに対し農耕は行為を指す」、「人類学・考古学では農耕(と牧畜)という言い方が用いられる」といった違いがある。.

新しい!!: 数学と農耕 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 数学と関数 (数学) · 続きを見る »

関数一覧

数学の中で、特別の名前を冠するに足る重要な関数がいくつかある。この記事はそれらの関数の個々の記事を参照する一覧である。.

新しい!!: 数学と関数一覧 · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: 数学と関数空間 · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: 数学と関数解析学 · 続きを見る »

この記事では量(りょう、)について解説する。.

新しい!!: 数学と量 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 数学と量子力学 · 続きを見る »

自然科学

自然科学(しぜんかがく、英語:natural science)とは、.

新しい!!: 数学と自然科学 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 数学と自然数 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: 数学と離散数学 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 数学と集合論 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 数学と連続 (数学) · 続きを見る »

連続体仮説

連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。.

新しい!!: 数学と連続体仮説 · 続きを見る »

逆問題

逆問題(ぎゃくもんだい、Inverse problem)とは、数学・物理学の一分野であり、入力(原因)から出力(結果、観測)を求める問題を順問題(じゅんもんだい、Direct problem)と呼び、その逆に出力から入力を推定する問題や入出力の関係性を推定する問題を逆問題と呼ぶ。.

新しい!!: 数学と逆問題 · 続きを見る »

逆数学

逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析の結果を反映している。 逆数学は、によってはじめて言及された。基本文献はを参照。.

新しい!!: 数学と逆数学 · 続きを見る »

虚数

虚数(きょすう)とは、実数ではない複素数のことである。ただし、しばしば「虚数」と訳される は、「2乗した値がゼロを超えない実数になる複素数」として定義される場合がある。 または で表される虚数単位は代表的な虚数の例である。 1572年にラファエル・ボンベリ は虚数を定義した。しかし当時は、ゼロや負の数ですら架空のもの、役に立たないものと考えられており、負の数の平方根である虚数は尚更であった。ルネ・デカルトも否定的にとらえ、著書『La Géométrie(幾何学)』で「想像上の数」と名付け、これが英語の imaginary number の語源になった。その後徐々に多くの数学者に認知されていった。.

新しい!!: 数学と虚数 · 続きを見る »

P≠NP予想

P≠NP予想(P≠NPよそう、)は、計算複雑性理論(計算量理論)におけるクラスPとクラスNPが等しくないという予想である。P対NP問題(PたいNPもんだい、)と呼ばれることもある。 理論計算機科学と現代数学上の未解決問題の中でも最も重要な問題の一つであり、2000年にクレイ数学研究所のミレニアム懸賞問題の一つとして、この問題に対して100万ドルの懸賞金がかけられた。.

新しい!!: 数学とP≠NP予想 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 数学とP進数 · 続きを見る »

暦(こよみ、れき)とは、時間の流れを年・月・週・日といった単位に当てはめて数えるように体系付けたもの。また、その構成の方法論(暦法)や、それを記載した暦書・暦表(日本のいわゆる「カレンダー」)を指す。さらに、そこで配当された各日ごとに、月齢、天体の出没(日の出・日の入り・月の出・月の入り)の時刻、潮汐(干満)の時刻などの予測値を記したり、曜日、行事、吉凶(暦注)を記したものをも含める。 細分すると、.

新しい!!: 数学と暦 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 数学と抽象代数学 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 数学と暗号理論 · 続きを見る »

推論規則

推論規則(すいろんきそく、rule of inference, inference rule, transformation rule)とは、論理式から他の論理式を導く推論の規則である。 記号、公理、代入規則、推論規則によって理論を形式化したものを公理系という。 公理は記号だけで記述されるが、推論規則や代入規則はこれらの記号について述べているメタ言語で記述される。 恒真式 (トートロジー)から推論規則を導くと妥当性のある推論になる。.

新しい!!: 数学と推論規則 · 続きを見る »

概念

概念(がいねん、哲学では仏: notion、独: Begriffというが、日常的に仏: concept、独: Konzeptという。コンセプトは前記フランス語から由来している)は、命題の要素となる項(Terminus)が表すものであり、言い換えれば、それが言語で表現された場合に名辞(Terminus)となるものが概念である。 事象に対して、抽象化・ 普遍化してとらえた、思考の基礎となる基本的な形態として、脳の機能によってとらえたもの。.

新しい!!: 数学と概念 · 続きを見る »

構造

構造(こうぞう、英:structure)とは、ひとつのものを作りあげている部分部分の組み合わせかた。ひとつの全体を構成する諸要素同士の、対立・矛盾・依存などの関係の総称。複雑なものごとの 部分部分や要素要素の 配置や関係。.

新しい!!: 数学と構造 · 続きを見る »

測量

1728年刊 "Cyclopaedia" より、測量機器と測量手法の図 測量(そくりょう)は、地球表面上の点の関係位置を決めるための技術・作業の総称。地図の作成、土地の位置・状態調査などを行う。 日本では高度の精度を必要としない測量は基本的に誰でも行うことができるが、国または地方公共団体の実施する基本測量、公共測量等は測量法に従って登録された測量士又は測量士補でなければ技術者として従事することはできず、またこうした測量は測量法に従って登録された、営業所ごとに測量士が一人以上置かれた測量業者でなければ請け負うことはできない。一方、登記を目的とした測量は土地家屋調査士でなければ行うことはできない。 測量の歴史は古く、古代エジプトの時代から行われてきた。日本では1800年に伊能忠敬が日本地図作成のため、蝦夷地(現在の北海道)で本格的な測量を行ったのが始まりとされる。.

新しい!!: 数学と測量 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 数学と濃度 (数学) · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 数学と有理数 · 続きを見る »

情報工学

情報工学(じょうほうこうがく)は情報分野についての工学である。語感としては、情報科学という語がもっぱらおおまかに「科学」という語が指す範囲を中心としているのに対し、「工学」的な分野に重心があるが、内実としてはどれもたいして変わらないことが多い(たとえば、大学の学部学科名などに関しては、個々の大学の個性による違いのほうが、名前による違いより大きい)。日本で、大学の工学部などにコンピュータ科学ないし情報関係の学科を設置する際に、「工学」部という語との整合のためだけに便利に使われた、という面が大きい(情報工学科の記事を参照)。 なお英語の information engineering はソフトウェア工学における一手法であり、日本語の「情報工学」とは対応しない。また似た言葉に情報学がある。.

新しい!!: 数学と情報工学 · 続きを見る »

情報理論

情報理論(じょうほうりろん、Information theory)は、情報・通信を数学的に論じる学問である。応用数学の中でもデータの定量化に関する分野であり、可能な限り多くのデータを媒体に格納したり通信路で送ったりすることを目的としている。情報エントロピーとして知られるデータの尺度は、データの格納や通信に必要とされる平均ビット数で表現される。例えば、日々の天気が3ビットのエントロピーで表されるなら、十分な日数の観測を経て、日々の天気を表現するには「平均で」約3ビット/日(各ビットの値は 0 か 1)と言うことができる。 情報理論の基本的な応用としては、ZIP形式(可逆圧縮)、MP3(非可逆圧縮)、DSL(伝送路符号化)などがある。この分野は、数学、統計学、計算機科学、物理学、神経科学、電子工学などの交差する学際領域でもある。その影響は、ボイジャー計画の深宇宙探査の成功、CDの発明、携帯電話の実現、インターネットの開発、言語学や人間の知覚の研究、ブラックホールの理解など様々な事象に及んでいる。.

新しい!!: 数学と情報理論 · 続きを見る »

春季賞

春季賞(しゅんきしょう)は、日本数学会から贈られる数学の学術賞である。 前身は彌永賞で、日本数学会会員で40歳未満の優れた業績を上げた数学者に毎年贈られる。 日本数学会において最も権威を持つ賞の一つである。40歳未満の優れた業績を上げた数学者に授与されるということで、フィールズ賞の日本版のように思われることがあるが、フィールズ賞と違い実績の浅い准教授以下の地位の者に受賞されることもある。従って世界的に無名な数学者が受賞者だったり、20年以上も前に受賞したのに未だに准教授だったりするものがいる。年齢制限の無い賞には秋季賞がある。.

新しい!!: 数学と春季賞 · 続きを見る »

方法論

方法論(ほうほうろん、)とは、以下のように定義される。.

新しい!!: 数学と方法論 · 続きを見る »

文化史

文化史(ぶんかし、cultural history、histoire culturelle、Kulturgeschichte)は、さまざまな時代と地域における精神・文化的な人間活動の研究と、その記述である。 文化史は、直接的には政治史または国家の歴史には関わらず、文化史では、年代は政治史の場合ほどの重要性はもたない。 文化史の概念は18世紀に遡り、人類の絶えざる文化的な発展という啓蒙主義(ヴォルテール)の信念に基づく。 ドイツのロマン主義(ヨハン・ゴットフリート・ヘルダー)においてはあらゆる慣習的な活動を文化史の一部として見て、その中に国民精神の表現を認めた。 20世紀は、自らの認識を諸民族の比較文化史から発達させた、アーノルド・J・トインビーとオスヴァルト・シュペングラーを代表とするような文化哲学に至った。アルフレート・ヴェーバーは、精神史の方向で文化史を文化社会学へ発達させた。 「世紀末ウィーン」を代表するディレッタントのひとりエゴン・フリーデルも浩瀚な『近代文化史』を著している。文化史の要素は、家族、言語、習俗、宗教、芸術そして科学などである。文化史はまた、「日常という素材」をも含む幅広い素材に基づいて叙述される。.

新しい!!: 数学と文化史 · 続きを見る »

日本数学会

一般社団法人 日本数学会(いっぱんしゃだんほうじんにほんすうがっかい、The Mathematical Society of Japan、略称: MSJ)は、1877年(明治10年)に設立された東京数学会社を起源とする1946年(昭和21年)に設立された学会である。数学の研究に関する交流の場であり、数学を一般社会へ普及することを図る。また、関係諸方面と協力して学術文化の向上発展に寄与することを目的とする。会員約 5,000 名を擁する組織である。日本国内および国際的に、数学の進歩・発展のために力をつくしている。.

新しい!!: 数学と日本数学会 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 数学と数 · 続きを見る »

数学基礎論

数学基礎論(すうがくきそろん、英語:)は、数学の一分野。他の分野が整数・実数・図形・関数などを取り扱うのに対し、数学自体を対象とする。.

新しい!!: 数学と数学基礎論 · 続きを見る »

数学原論

数学原論(すうがくげんろん、Éléments de mathématique)は、数学者集団ニコラ・ブルバキ による数学に関するである。2016年現在11の部門からなり、各部門が1つあるいは複数の章に分かれている。最初の巻はエルマン (Hermann) 書店によって1939年から、はじめは小冊子の形で、後に合本として、出版された。編集者との意見の相違から、出版は1970年代にCCLSに代わり、1980年代にはマソン (Masson) 書店に代わった。2006年からは、シュプリンガー・フェアラーク (Springer Verlag) がすべての分冊を再出版している。(なお和訳は絶版である。) 書名の奇妙な "mathématique" は意図的なものであり、通常使われる複数形が示唆するかもしれないことに反し、数学は統一されているという著者の信条を表している。逆に、ブルバキの『数学史』(Éléments d'histoire des mathématiques, 数学史原論)は複数形を用いており、ブルバキ以前には数学はばらばらな分野の集まりであったが、構造の現代的な概念によって統一できるようになったことを示している。 最初の6部門は論理的な順序に従っている。他の部門は初めの6部門に述べられていたことは用いるが、順序立ってはいない。.

新しい!!: 数学と数学原論 · 続きを見る »

数学に関する記事の一覧

この記事では数学に関する記事を総覧する。目的および使い方等は案内を参照。記事の更新状況は、MediaWiki:recentchangeslinked(数学に関する記事の一覧)を参照。.

新しい!!: 数学と数学に関する記事の一覧 · 続きを見る »

数学の哲学

数学の哲学(すうがくのてつがく、philosophy of mathematics)は、哲学(科学哲学)の一分野で、数学を条件付けている哲学的前提や哲学的基礎、そして数学の哲学的意味を研究するものである。数理哲学とも言われる。 数学的哲学(すうがくてきてつがく、mathematical philosophy)という用語が、しばしば「数学の哲学」と同義語として使われる。しかしながら、「数学的哲学」は、別の意味を少なくとも二つ持っている。一つは、例えばスコラ学の神学者の仕事やライプニッツやスピノザの体系が目標にしていたような、美学、倫理学、論理学、形而上学、神学といった哲学的主題を、その主張するところでは、より正確かつ厳密な形へと形式化するプロジェクトを意味する。さらに、個々の数学の実践者や、考えかたの似た現場の数学者の共同体が日頃抱いているものの考え方(=哲学)を意味する。.

新しい!!: 数学と数学の哲学 · 続きを見る »

数学の競技

数学の競技(すうがくのきょうぎ)は、数学の問題を解くことを競うゲーム。複数の選択肢を選ぶ方法や、数値や数式の記入、証明の記述などがある。勝敗の基準は問題を解くまでの時間や方法、難問の場合は解くこと自体が加点とする。かつてルネサンス期のイタリアでは、代数方程式を解く数学競技が流行し、秘術とされた解法公式が世に出るきっかけとなり、その後の天文学や物理学の発展に大いに貢献した。 現代の数学の競技には以下のものがある。.

新しい!!: 数学と数学の競技 · 続きを見る »

数学史

数学史(すうがくし、英語:history of mathematics)とは、数学の歴史のこと。第一には、数学上の発見の起源についての研究であり、副次的な興味として、過去の数学においてどのような手法が一般的であったかや、どのような記号が使われたかなども調べられている。.

新しい!!: 数学と数学史 · 続きを見る »

数学定数

数学定数(すうがくていすう)とは、なんらかの"面白い"性質を持った定数である。 数学定数は、ふつうは実数体か複素数体の元である。数学定数と呼ばれうるものは、一つの変項を持ち、ZFC 集合論により証明可能な論理式により、それを満足するただ一つの数として決定可能 (definable) であり、ほとんどの場合はその値が計算可能 (computable) である。 変数を斜体で表すのに対し、定数であることを明示するために、立体を使うことがある。.

新しい!!: 数学と数学定数 · 続きを見る »

数学上の未解決問題

数学上の未解決問題(すうがくじょうのみかいけつもんだい)とは未だ解決されていない数学上の問題のことである。 未解決問題の定義を「未だ証明が得られていない命題」という立場を取るのであれば、そういった問題は数学界に果てしなく存在する。ここでは、リーマン予想のようにその証明結果が数学全域と関わりを持つような命題、P≠NP予想のようにその結論が現代科学・技術のあり方に甚大な影響を及ぼす可能性があるような命題、問いかけのシンプルさ故に数多くの数学者や数学愛好家達が証明を試みてきたような有名な命題を列挙する。.

新しい!!: 数学と数学上の未解決問題 · 続きを見る »

数学的な美

数学的な美(すうがくてきなび、mathematical beauty)とは、数学に関する審美的・美学的な意識・意義・側面を様々な観点から取り上げる概念である。数学的な美 (mathematical beauty) と数学の美 (beauty in mathematics) はしばしば同義に扱われるかもしれないが、後者が数学そのものの審美性の概念であるのに対して前者は数学を含む全ての事象の数学的側面に注目し、かつ後者を包含しうることがそれらの違いである。従って本文では前者の意味に基づいて論じる。 多くの数学者は彼らの仕事、一般的には数学そのものから美学的な喜びを覚えている。彼らは数学(あるいは少なくとも数学のある種の側面)を美として記述することにより、この喜びを表現している。数学者は芸術の一形態あるいは少なくとも創造的な行動として数学を表現している。このことはしばしば音楽や詩を対照として比較される。数学者バートランド・ラッセルは数学的な美に関する彼の印象を次のように表現した。 ハンガリーの数学者ポール・エルデシュは数学のに関する彼の見解を次のような言葉で表現した。.

新しい!!: 数学と数学的な美 · 続きを見る »

数学的直観主義

数学的直観主義(すうがくてきちょっかんしゅぎ)とは、数学の基礎を数学者の直観におく立場のことを指す。.

新しい!!: 数学と数学的直観主義 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 数学と数学的構造 · 続きを見る »

数学記号の表

数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。.

新しい!!: 数学と数学記号の表 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: 数学と数学者 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 数学と数列 · 続きを見る »

数値解析

バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃) 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: 数学と数値解析 · 続きを見る »

数理工学

数理工学(すうりこうがく)は工学の一分野であり、世の中の諸現象、特に工学に関する現象を数理モデルとして捉え、それらに対して数学や物理を用いて理論上の解釈をあたえる学問である。特に数理工学では、古典的な数学の手法では説明できない現象に対し、新しい考え方を用いて解決方法を導き出そうとする。したがって数理工学においては複雑系科学に代表されるような最先端の応用数学についても研究されている。 数理工学の対象となる現象は必ずしも工学における現象とは限らず、数理モデルとして抽象化される現象はすべて対象であると言ってもよい。広義では「数学を工学に応用する」という姿勢を持つ学問はすべて数理工学とされる。 なお「数理工学」という言葉に相当する英語としては、定訳がない。下記に挙げてある研究・教育機関のホームページを見ても分かるように、いくつかの訳が考えられる。「数理工学」に相当すると考えられる英語には、applied mathematics and physics や mathematical engineering がある。.

新しい!!: 数学と数理工学 · 続きを見る »

数理心理学

数理心理学(英語:mathematical psychology)は、数学を使ってモデル化などを試みる心理学の分野。実験で観察される現象のモデル化や、測定などを扱う。厳密な線引きは不可能であるが、統計処理法の考案などは計量心理学と呼ばれることが多い。 使われる数学概念は多岐にわたるが、例えば微分方程式、代数学、ゲーム理論、コンピュータシミュレーションなどがある。19世紀の精神物理学から近年のニューラルネットなどまで様々に研究されている。 専門誌としてJournal of Mathematical Psychologyなどがある。 Category:心理学の分野 Category:応用数学.

新しい!!: 数学と数理心理学 · 続きを見る »

数理モデル

数理モデル(すうりモデル、mathematical model)とは、通常は、時間変化する現象の計測可能な主要な指標の動きを模倣する、微分方程式などの「数学の言葉で記述した系」のことを言う。モデルは「模型」と訳され「数理模型」と呼ばれることもある。元の現象を表現される複雑な現実とすれば、モデル(模型)はそれの特別な一面を簡略化した形で表現した「言語」(いまの場合は数学)で、より人間に理解しやすいものとして構築される。構築されたモデルが、元の現象を適切に記述しているか否かは、数学の外の問題で、原理的には論理的には真偽は判定不可能である。人間の直観によって判定するしかない。どこまで精緻にモデル化を行ったとしても、得た観察を近似する論理的な説明に過ぎない。 数理モデルは、対象とする現象や、定式化の抽象度などによって様々なものがある。.

新しい!!: 数学と数理モデル · 続きを見る »

数理経済学

数理経済学(すうりけいざいがく、Mathematical Economics)は、数学的手法を用いた分析がなされる経済学の一分野である。ただし、現代の経済学では程度の違いはあるものの多くの分野でトポロジーなど数学的な概念が用いられており、経済学の中に「数理経済学」という明確な分野が存在するわけではない。.

新しい!!: 数学と数理経済学 · 続きを見る »

数理生物学

数理理論生物学(すうりりろんせいぶつがく、mathematical and theoretical biology)とは、生物学、バイオテクノロジーおよび医学にまたがる学際的な研究分野の一つである。 数理生物学(すうりせいぶつがく、mathematical biology)、または生物数学(せいぶつすうがく、biomathematics)と呼ばれることもあり、その場合は、数学的側面を強調している。また、理論生物学(理論生物学、theoretical biology)と呼ばれることもあり、その場合には、生物学的側面を強調している。 少なくとも4つの主要な亜領域、生物数学モデリング(biological mathematical modeling)、複雑システムバイオロジー(relational biology/complex systems biology(CBS))、バイオインフォマティクス(bioinformatics)、および計算機数学モデリング(computational biomodeling/biocomputing)を含む。.

新しい!!: 数学と数理生物学 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: 数学と数理物理学 · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: 数学と数理論理学 · 続きを見る »

数秘術

数秘術(すうひじゅつ、Numerology)とは、西洋占星術や易学等と並ぶ占術の一つで、ピタゴラス式やカバラ等が有名である。「数秘学」とも言う。 一般的な占術の方法は「命術」で、占う対象の生年月日(西暦)や姓名などから、固有の計算式に基づいて運勢傾向や先天的な宿命を占う方法である。.

新しい!!: 数学と数秘術 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 数学と数論 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 数学と整数 · 続きを見る »

普遍代数学

数学の一分野としての普遍代数学(ふへんだいすうがく、Universal algebra)あるいは一般代数学(いっぱんだいすうがく、general algebra)は、構造の「モデル」となる例についてではなく代数的構造そのものについて研究する分野である。例えば、その研究対象として個々の群を考えるのではなく群論そのものをその研究対象とするのである。.

新しい!!: 数学と普遍代数学 · 続きを見る »

ここにリダイレクトされます:

Mathematicsすうがく数学書数学的

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »