ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

電解法

索引 電解法

電解法(でんかいほう)は、一般的に電気分解による化学反応を用いた薬品の製造や処理の方法を指す。「電解法」には多様な方法が存在するが、いずれも電気エネルギーを加え、溶媒中のイオン化傾向の異なる物質を介して酸化還元反応を行うことで化合物を化学分解し、目的とする生産物を得たり処理を行う方法である。.

56 関係: 加水分解塩化ナトリウム塩素塩素酸ナトリウム三層電解法二酸化マンガン二酸化鉛亜鉛化合物化学分解ナトリウムマンガンマンガン乾電池ノーベル賞フッ化ナトリウムフッ化水素フッ化水素カリウムフッ素ファラデーの電気分解の法則ニッケルホール・エルー法アマルガムアノードアルミニウムアンリ・モアッサンイオン交換膜イオン交換膜法イオン化イオン化傾向カリウムカソードクロム石綿硝酸硫酸マンガン(II)過マンガン酸カリウム金属酸化アルミニウム酸化還元反応酸素電解精錬電解質電気電気分解電気めっき...水素水銀水酸化ナトリウム氷晶石溶媒溶融塩電解 インデックスを展開 (6 もっと) »

加水分解

加水分解(かすいぶんかい、hydrolysis)とは、反応物に水が反応し、分解生成物が得られる反応のことである。このとき水分子 (H2O) は、生成物の上で H(プロトン成分)と OH(水酸化物成分)とに分割して取り込まれる。反応形式に従った分類により、加水分解にはいろいろな種類の反応が含まれる。 化合物ABが極性を持ち、Aが陽性、Bが陰性であるとき、ABが水と反応するとAはOHと結合し、BはHと結合する形式の反応が一般的である。 加水分解の逆反応は脱水縮合である。.

新しい!!: 電解法と加水分解 · 続きを見る »

塩化ナトリウム

塩化ナトリウム(えんかナトリウム、sodium chloride)は化学式 NaCl で表されるナトリウムの塩化物である。単に塩(しお)、あるいは食塩と呼ばれる場合も多いが、本来「食塩」は食用、医療用に調製された塩化ナトリウム製品を指す用語である。式量58.44である。 人(生体)を含めた哺乳類をはじめとする地球上の大半の生物にとっては、必須ミネラルであるナトリウム源として、生命維持になくてはならない重要な物質である。 天然には岩塩として存在する。また、海水の主成分として世界に広く分布するでもある(約2.8%)。この他、塩湖や温泉(食塩泉)などにも含有されていることで知られる。.

新しい!!: 電解法と塩化ナトリウム · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: 電解法と塩素 · 続きを見る »

塩素酸ナトリウム

塩素酸ナトリウム(えんそさんナトリウム、sodium chlorate)は、ナトリウムの塩素酸塩で、化学式 NaClO3の化合物。塩素酸ソーダとも呼ばれる。.

新しい!!: 電解法と塩素酸ナトリウム · 続きを見る »

三層電解法

三層電解法(さんそうでんかいほう、trinal electrolytic process)とは、アルミニウムを高純化する電解法である。三層電解精製法とも呼ばれ、1901年にアメリカのフープスによって発明された。原料には純度99.85%のアルミニウムが使われ、アルミニウム1tあたり14,000 - 15,000kwhの電力が必要となる。大量の電気を使うことから最近では電気の消費量の少ない偏析法が主流である。.

新しい!!: 電解法と三層電解法 · 続きを見る »

二酸化マンガン

二酸化マンガン(にさんかマンガン、manganese dioxide)または酸化マンガン(IV)(さんかマンガン(IV)、manganese(IV) oxide)は、化学式が MnO2 と表されるマンガンの酸化物である。酸化剤や乾電池、無機触媒として利用されている。「二酸化マンガン」と一般には呼ばれるが、実際には不定比化合物であり、MnOx (x.

新しい!!: 電解法と二酸化マンガン · 続きを見る »

二酸化鉛

二酸化鉛(にさんかなまり)は鉛と酸素の化合物。化学式はPbO2。酸化鉛(IV) 、過酸化鉛とも呼ぶ。鉛蓄電池などの電極の材料として用いられる。 黒色から褐色の斜方晶系であるα相と、黒色で正方晶系のβ相の多形があり、比重はそれぞれ9.773と9.696g/cm3である。水には不溶で、塩酸には塩素を発生しながら溶ける。 日本では毒物及び劇物取締法により劇物に、また消防法により第1類危険物に指定されている.

新しい!!: 電解法と二酸化鉛 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: 電解法と亜鉛 · 続きを見る »

化合物

化合物(かごうぶつ、chemical compound)とは、化学反応を経て2種類以上の元素の単体に生成することができる物質であり岩波理化学辞典(4版)、p.227、【化合物】、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。 同じ化合物であれば、成分元素の質量比はつねに一定であり、これを定比例の法則と言い株式会社 Z会 理科アドバンスト 考える理科 化学入門、混合物と区別される。ただし中には結晶の不完全性から生じる岩波理化学辞典(4版)、p.1109、【不定比化合物】不定比化合物のように各元素の比が自然数にならないが安定した物質もあり、これらも化合物のひとつに含める。 化合物は有機化合物か無機化合物のいずれかに分類されるが、その領域は不明瞭な部分がある。.

新しい!!: 電解法と化合物 · 続きを見る »

化学分解

化学分解(かがくぶんかい、Chemical decomposition)は、化合物が2種以上の簡単な物質に変化する化学反応である。単に分解〈ぶんかい、decomposition〉という場合も多い。反応様式で分解の逆の構成となる化学反応は化学合成(化合)または合成と呼ばれる。 具体的には高温による熱分解や、光や放射線による光分解や放射線分解が代表的な分解である。 水の例を以下に示す。水は、電気分解によって水素分子と酸素分子に分解することができる。 過酸化水素は放置すると水と酸素に分解する。 反応様式で分解と逆反応とが可逆的に起こる状態は解離と呼ばれる。また、化合物が順次低分子量の物質に順次分解してゆく過程は日本語では減成〈げんせい、decomposition〉と呼ばれる。.

新しい!!: 電解法と化学分解 · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 電解法とナトリウム · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: 電解法とマンガン · 続きを見る »

マンガン乾電池

単1から単5の円筒型、及び9V角形のマンガン電池(PU型) マンガン乾電池(マンガンかんでんち)は一次電池の一種で、正極の減極剤(復極剤)として二酸化マンガンを用いたものである。別名、ルクランシェ電池。 英語では「Zinc-carbon battery:亜鉛-炭素電池)」と呼称され、「Zinc-carbon battery(or "heavy duty"):亜鉛-炭素電池(高耐久型)」とも呼称される。.

新しい!!: 電解法とマンガン乾電池 · 続きを見る »

ノーベル賞

ノーベル賞(ノーベルしょう)は、ダイナマイトの発明者として知られるアルフレッド・ノーベルの遺言に従って1901年から始まった世界的な賞である。物理学、化学、生理学・医学、文学、平和および経済学の「5分野+1分野」で顕著な功績を残した人物に贈られる。 経済学賞だけはノーベルの遺言にはなく、スウェーデン国立銀行の設立300周年祝賀の一環としてノーベルの死後70年後にあたる1968年に設立されたものであり、ノーベル財団は「ノーベル賞ではない」としているが、一般にはノーベル賞の一部門として扱われることが多い。.

新しい!!: 電解法とノーベル賞 · 続きを見る »

フッ化ナトリウム

フッ化ナトリウム(フッかナトリウム、sodium fluoride)は組成式 NaF で表されるナトリウムのフッ化物である。無色の固体で、フッ化物イオンの発生源としてさまざまな用途に用いられる。フッ化カリウムと比べて安価であり、吸湿性も低いが、利用される頻度はカリウム塩のほうが高い。.

新しい!!: 電解法とフッ化ナトリウム · 続きを見る »

フッ化水素

フッ化水素(フッかすいそ、弗化水素、)とは、水素とフッ素とからなる無機化合物で、分子式が HF と表される無色の気体または液体。水溶液はフッ化水素酸 と呼ばれ、フッ酸とも俗称される。毒物及び劇物取締法の医薬用外毒物に指定されている。.

新しい!!: 電解法とフッ化水素 · 続きを見る »

フッ化水素カリウム

フッ化水素カリウム はカリウムイオンとビフルオリドイオンから成る無機化合物。 用途はエッチング液Jean Aigueperse, Paul Mollard, Didier Devilliers, Marius Chemla, Robert Faron, Renée Romano, Jean Pierre Cuer, “Fluorine Compounds, Inorganic” in Ullmann’s Encyclopedia of Industrial Chemistry 2005 Wiley-VCH, Weinheim.

新しい!!: 電解法とフッ化水素カリウム · 続きを見る »

フッ素

フッ素(フッそ、弗素、fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。 電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。.

新しい!!: 電解法とフッ素 · 続きを見る »

ファラデーの電気分解の法則

ファラデーの電気分解の法則(ファラデーのでんきぶんかいのほうそく、Faraday's laws of electrolysis)とは、1833年にマイケル・ファラデーが発見した、電解質溶液中の電気分解に関する法則である。第一法則と第二法則がある。電気分解は電子の授受によって引き起こされる現象であるから、電解を行ったとき、各電極で発生または析出する物質の量は、電子の授受に関係したイオンの価数および、電解に使われた電気量、つまり、電子の物質量に関係しているはずである。電子の存在が明らかでなかった1833年、ファラデー(イギリス)は、電気分解における物質の変化量と電気量(通じた電流の強さと時間の積)との間に、以下の関係が成り立つことを実験的に見いだした。これをファラデーの電気分解の法則という。.

新しい!!: 電解法とファラデーの電気分解の法則 · 続きを見る »

ニッケル

ニッケル (nikkel, nickel, niccolum) は、原子番号28の金属元素である。元素記号は Ni。 地殻中の存在比は約105 ppmと推定されそれほど多いわけではないが、鉄隕石中には数%含まれる。特に 62Ni の1核子当たりの結合エネルギーが全原子中で最大であるなどの点から、鉄と共に最も安定な元素である。岩石惑星を構成する元素として比較的多量に存在し、地球中心部の核にも数%含まれると推定されている。.

新しい!!: 電解法とニッケル · 続きを見る »

ホール・エルー法

ホール・エルー法(ホール・エルーほう、Hall-Héroult process)は、唯一実用化されているアルミニウムの製錬方法。溶融させた原料を電気分解させることで目的物質を得る溶融塩電解の代表例である。1886年にアメリカのチャールズ・マーティン・ホールとフランスのポール・エルーによりそれぞれ独自に開発された。.

新しい!!: 電解法とホール・エルー法 · 続きを見る »

アマルガム

アマルガム(amalgam)は、水銀と他の金属との合金の総称である。 広義では、混合物一般を指す。水銀は他の金属との合金をつくりやすい性質があり、常温で液体になる合金も多い。.

新しい!!: 電解法とアマルガム · 続きを見る »

アノード

アノード (Anode) とは、外部回路から電流が流れ込む電極のこと。外部回路へ電子が流れ出す電極とも言える。 電気分解や電池においては、アノードは電気化学的に酸化が起こる電極である。真空管では構造上プレートと呼ばれることが多い。 アノードという語はマイケル・ファラデーにより命名され、ギリシア語で上り口を意味するAnodosに由来する。 アノードと逆の電極はカソードである。アノードとカソードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。陽極と陰極の区別は電位の高低によるとする流儀(電圧の方向による区別)と、アノード・カソードの直訳とする流儀(電流の方向による区別)があり、用語として混乱している。正極・負極という用語は、電位の高い側・低い側という意味で定着しているので、電位の高い低いの区別には正極・負極を、電流の向きの区別にはアノード・カソードを用いるのが望ましい。 正極・負極で表現すると、アノードは、真空管や電気分解では正極、電池の場合は負極である。.

新しい!!: 電解法とアノード · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 電解法とアルミニウム · 続きを見る »

アンリ・モアッサン

フェルディナン・フレデリック・アンリ・モアッサン(Ferdinand Frédéric Henri Moissan、1852年9月28日 – 1907年2月20日)はフランスの化学者である。フリードリヒ・ヴェーラーが最初に生成した炭酸カルシウムを、1892年にトーマス・ウィルソンと商業的に生産する方法を開発した。1906年、フッ素の研究と分離およびモアッサン電気炉の製作の業績によりノーベル化学賞を受賞した。この電気炉は実績があり、この中に石灰とコークスの混合物を入れて2000℃超に加熱するとカルシウム・カーバイドが得られたのである。.

新しい!!: 電解法とアンリ・モアッサン · 続きを見る »

イオン交換膜

イオン交換膜(イオンこうかんまく、)は、イオン交換樹脂を膜状にしたもので、異符号のイオンの通過を阻止し、同符号のイオンのみを通過させる性質を持つ、イオン濾過膜のことである。「イオン交換膜」という言葉からは、イオンの交換が目的であるかのように誤解されやすいが、イオンの濾過が目的である。陽イオンだけを通過させる陽イオン交換膜と、陰イオンだけを通過させる陰イオン交換膜がある。.

新しい!!: 電解法とイオン交換膜 · 続きを見る »

イオン交換膜法

イオン交換膜法(いおんこうかんまくほう)またはIEM法(ion-exchange-membrane法)とは、電解法の一つで、イオン交換膜と電気分解を用いて塩化ナトリウム水溶液から水酸化ナトリウムを合成する方法である。副産物として塩素と水素が得られる。日本ではかつて水銀法と隔膜法が使われていたが、それぞれ人体に有害な水銀とアスベストを使っていたことから、水銀法は1986年6月、隔膜法は1999年8月に姿を消し、これ以後すべてイオン交換膜法となっている。.

新しい!!: 電解法とイオン交換膜法 · 続きを見る »

イオン化

イオン化(イオンか、ionization)とは、電荷的に中性な分子を、正または負の電荷を持ったイオンとする操作または現象で、電離(でんり)とも呼ばれる。 主に物理学の分野では荷電ともいい、分子(原子あるいは原子団)が、エネルギー(電磁波や熱)を受けて電子を放出したり、逆に外から得ることを指す。(プラズマまたは電離層を参照) また、化学の分野では解離ともいい、電解質(塩)が溶液中や融解時に、陽イオンと陰イオンに分かれることを指す。.

新しい!!: 電解法とイオン化 · 続きを見る »

イオン化傾向

イオン化傾向(イオンかけいこう、)とは、溶液中(おもに水溶液中)における元素(主に金属)のイオンへのなりやすさを表す。電気化学列あるいはイオン化列とも呼ばれる。.

新しい!!: 電解法とイオン化傾向 · 続きを見る »

カリウム

リウム(Kalium 、)は原子番号 19 の元素で、元素記号は K である。原子量は 39.10。アルカリ金属に属す典型元素である。医学・薬学や栄養学などの分野では英語のポタシウム (Potassium) が使われることもある。和名では、かつて加里(カリ)または剥荅叟母(ぽたしうむ)という当て字が用いられた。 カリウムの単体金属は激しい反応性を持つ。電子を1個失って陽イオン K になりやすく、自然界ではその形でのみ存在する。地殻中では2.6%を占める7番目に存在量の多い元素であり、花崗岩やカーナライトなどの鉱石に含まれる。塩化カリウムの形で採取され、そのままあるいは各種の加工を経て別の化合物として、肥料、食品添加物、火薬などさまざまな用途に使われる。 生物にとっての必須元素であり、神経伝達で重要な役割を果たす。人体では8番目もしくは9番目に多く含まれる。植物の生育にも欠かせないため、肥料3要素の一つに数えられる。.

新しい!!: 電解法とカリウム · 続きを見る »

カソード

ード(Cathode、Kathode)は、外部回路へ電流が流れ出す電極のこと。外部回路から電子が流れ込む電極とも言える。 電気分解や電池においては、カソードは電気化学的に還元が起こる電極である。 カソードという語はマイケル・ファラデーにより命名され、ギリシア語で下り口を意味するCathodosに由来する。 カソードと逆の電極はアノードである。カソードとアノードの区別は、電流(電子)の向きによって決まるのであり、電位の高低によらないことに注意を要する。.

新しい!!: 電解法とカソード · 続きを見る »

クロム

ム(chromium 、Chrom 、chromium、鉻)は原子番号24の元素。元素記号は Cr。クロム族元素の1つ。.

新しい!!: 電解法とクロム · 続きを見る »

石綿

石綿 石綿 製品化された石綿、イタリア産 拡大した石綿 石綿(いしわた、せきめん、(アスベスト) (アスベストス))は、蛇紋石や角閃石が繊維状に変形した天然の鉱石で無機繊維状鉱物の総称。蛇紋石系(クリソタイル)と角閃石系(クロシドライト、アモサイトなど)に大別される。 ギリシア語の は「しない(ない)」という意味の と、「消化できる」という意味の から来ている。.

新しい!!: 電解法と石綿 · 続きを見る »

硝酸

硝酸(しょうさん、nitric acid)は窒素のオキソ酸で、化学式 HNO3 で表される。代表的な強酸の1つで、様々な金属と反応して塩を形成する。有機化合物のニトロ化に用いられる。硝酸は消防法第2条第7項及び別表第一第6類3号により危険物第6類に指定され、硝酸を 10 % 以上含有する溶液は医薬用外劇物にも指定されている。 濃硝酸に二酸化窒素、四酸化二窒素を溶かしたものは発煙硝酸、赤煙硝酸と呼ばれ、さらに強力な酸化力を持つ。その強力な酸化力を利用してロケットの酸化剤や推進剤として用いられる。.

新しい!!: 電解法と硝酸 · 続きを見る »

硫酸マンガン(II)

硫酸マンガン(II)() はマンガンの硫酸塩で、化学式MnSO4で表される無機化合物である。 多くの金属硫酸塩と同様に無水物といくつかの水和物があり、一・四・五・七水和物が知られている。中でも一水和物が一般的である。無水物は無色で潮解性のある固体である。水和物はいずれも、二価のマンガン塩に特徴的な、淡いピンク色をした固体である。これらは天然にはズミク石(Szmikite、一水和物)、アイレス石(Ilesite、四水和物)、上国石(Jokokuite、五水和物)、マラー石(Mallardite、七水和物)として産出する。 硫酸マンガン(II)は金属マンガンや多くのマンガン化合物の前駆体となるため重要な物質であり、2005年には世界で2億6千万kgが生産されたArno H. Reidies "Manganese Compounds" Ullmann's Encyclopedia of Chemical Technology 2007; John Wiley。.

新しい!!: 電解法と硫酸マンガン(II) · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 電解法と銅 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 電解法と銀 · 続きを見る »

過マンガン酸カリウム

過マンガン酸カリウム(かマンガンさんカリウム、potassium permanganate)は化学式 KMnO4 の無機化合物で、カリウムイオン (K+) と過マンガン酸イオン (MnO4&minus) より構成される過マンガン酸塩の一種。Mn の酸化数は+7、O の酸化数は−2、K は+1である。 式量は 158.04 g/mol で、水、アセトン、メタノールに可溶である。固体では深紫色の柱状斜方晶系結晶である。においはなく、強力な酸化剤である。 水への溶解度は 7.5 g/100 g (25) で、約 200 ℃ で酸素を放ち分解する。 麻薬及び向精神薬取締法により麻薬向精神薬原料に指定されている。.

新しい!!: 電解法と過マンガン酸カリウム · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 電解法と金 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 電解法と金属 · 続きを見る »

酸化アルミニウム

酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

新しい!!: 電解法と酸化アルミニウム · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 電解法と酸化還元反応 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 電解法と酸素 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

新しい!!: 電解法と鉛 · 続きを見る »

電解精錬

電解精錬(でんかいせいれん、英語:electrolysis refining、electrolytic refining)とは電気分解を利用する金属の精錬法である。純度を高める技術には違いないが、しかし不純物の溶液からも金属を抽出するので一つの選鉱法ともいえる。.

新しい!!: 電解法と電解精錬 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: 電解法と電解質 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 電解法と電気 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

新しい!!: 電解法と電気分解 · 続きを見る »

電気めっき

電気めっき(electroplating)は電流を使うめっき法で、めっきしたい物質を含む溶液、溶融塩、または、固体電解質からその物質を還元させ、電導性のある物体にその物質(金属など)の薄い層を形成させる。電気めっきは、めっき対象の物体に欠けている特性(耐摩耗性、耐腐食性、潤滑性、見栄えなど)を補うことができる。また、小さすぎる物体の厚さを増加させる目的で行うこともある。 電気めっきで使っているプロセスを電着 (electrodeposition) と呼ぶ。ちょうどガルバニ電池を逆に作用させたものに似ている。めっき対象の物体を回路のカソードとする。.

新しい!!: 電解法と電気めっき · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 電解法と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 電解法と水素 · 続きを見る »

水銀

水銀(すいぎん、mercury、hydrargyrum)は原子番号80の元素。元素記号は Hg。汞(みずがね)とも書く。第12族元素に属す。常温、常圧で凝固しない唯一の金属元素で、銀のような白い光沢を放つことからこの名がついている。 硫化物である辰砂 (HgS) 及び単体である自然水銀 (Hg) として主に産出する。.

新しい!!: 電解法と水銀 · 続きを見る »

水酸化ナトリウム

水酸化ナトリウム(すいさんかナトリウム、sodium hydroxide)は化学式 NaOH で表される無機化合物で、ナトリウムの水酸化物であり、常温常圧ではナトリウムイオンと水酸化物イオンからなるイオン結晶である。苛性ソーダ(かせいソーダ、caustic soda)と呼ばれることも多い。 強塩基(アルカリ)として広汎かつ大規模に用いられ、工業的に非常に重要な基礎化学品の1つである。毒物及び劇物取締法により原体および5 %を超える製剤が劇物に指定されている。.

新しい!!: 電解法と水酸化ナトリウム · 続きを見る »

氷晶石

氷晶石(ひょうしょうせき、cryolite)は、産出が比較的稀なハロゲン化鉱物の一つ。化学式はNa3AlF6、物質名はヘキサフルオロアルミン酸ナトリウム(Sodium hexafluoroaluminate)。 1799年に西グリーンランドのイビクドゥト(Ivigtût、現在のイヒドゥート(Ivittuut))で発見された。最初は「解けない氷」と考えられ、外観があまりにも氷に似ていることからこの名前がついた(ギリシャ語で「冷気の石」)。そのほかの国でも産出が報告されているが、現在でも、結晶としてまとまって産出するのはグリーンランドだけである。 単斜晶系。モース硬度は2.5から3。比重は2.95から3。色は、半透明の無色または白色。屈折率が低く1.338で水とほぼ同程度であるため、透明な結晶を水の中に入れるとほとんど見えなくなる。 1886年、アルミニウムの製錬法であるホール・エルー法における融剤(融点1012℃)としての用途が開拓された。このため、グリーンランドは氷晶石の輸出で莫大な富を得た。 現在、アルミの製造にはより安価な蛍石から製造される合成品が用いられているうえ、埋蔵量が底を突いたため1987年にイヒドゥートの鉱山は閉山して町はゴーストタウンと化した。.

新しい!!: 電解法と氷晶石 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

新しい!!: 電解法と溶媒 · 続きを見る »

溶融塩電解

溶融塩電解(ようゆうえんでんかい、molten salt electrolysis)または融解塩電解(ゆうかいえんでんかい)は、イオン性の固体を高温にして融解させ、これを電気分解する方法である。イオン化傾向が大きく水溶液では析出しないアルミニウムやナトリウムがこの方法で工業生産される。.

新しい!!: 電解法と溶融塩電解 · 続きを見る »

ここにリダイレクトされます:

水銀法隔膜法

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »